
Leveraging Retrieval-Augmented Generation with Local LLMs for HPC 
Documentation Q&A

Kai Ebira, Martin Cuma
Center for High Performance Computing

University of Utah

ABSTRACT

RESULTS/DISCUSSION

The University of Utah's Center for High Performance 
Computing (CHPC) maintains extensive documentation, 
making it challenging for users to find specific information 
efficiently. We developed a Retrieval-Augmented Generation 
(RAG) system to provide an AI-powered question-answering 
assistant that utilizes local components, leveraging CHPC 
infrastructure and hardware. This assistant accurately answers 
user queries via a web API, retrieving relevant documentation 
chunks and generating context-aware responses, improving 
knowledge accessibility for CHPC users.

INTRODUCTION

Problem: Users (researchers, faculty, students) need quick, 
accurate answers to specific questions about HPC resources, 
software, and procedures. Searching documentation manually 
can be time-consuming and inefficient. Support staff resources 
are valuable.

METHODS

Data Collection
 
• Web scraping CHPC documentation using Python (BS4)

Data Processing

• Files are ingested into a vector database (Qdrant) using 
semantic embeddings.

• URLs were systematically preserved as metadata associated 
with each data chunk during the ingestion process.

Query Processing

• API Server (Starlette/Uvicorn)
• RAG Pipeline (LangChain)

o Context
o Retrieval
o Inference (Ollama)

User Interface

• GPT-like chat interface (Django/Python)
• Supports multiple simultaneous users

CONCLUSIONS

We successfully developed a Retrieval-Augmented Generation 
chatbot to answer user queries about CHPC documentation.

The system provides rapid, contextually relevant answers 
grounded in official documentation, reducing user search time 
and potentially easing the load on support staff.

This approach demonstrates the potential for localized AI 
assistants to improve access to complex technical information 
within HPC environments.

CHALLENGES/FUTURE WORK

Challenges

• Model Selection and Optimization:
• Identifying an optimal open-source Large Language 

Model (LLM) necessitated evaluating numerous 
candidates across diverse architectures and 
parameter sizes to achieve efficient and accurate 
inference.

• The initial prototype utilized Llama 3.2. However, 
response quality was suboptimal, exhibiting 
hallucinations even after tuning inference 
parameters .

• Transitioning to Gemma 3 demonstrably improved 
performance, significantly reducing undesired 
outputs and hallucinations.

• Hardware Compatibility and Performance:
• A key challenge involved choosing appropriate 

hardware to match the computational needs of the 
LLM used.

• Initial experiments conducted on an AMD MI100 
GPU yielded baseline performance metrics. 
Subsequent migration to an Nvidia RTX A4000 GPU 
resulted in a significant reduction in inference 
latency, decreasing by over 50%.

• Future Work:
• UI enhancements (e.g., feedback mechanism).
• Integration with Open OnDemand
• Systematic evaluation framework 

The chatbot successfully cites passages from CHPC 
documentation and even includes sources for user 
convenience. RAG Schematic and Pipeline, LangChain 

Retrieved May 6, 2025, from https://langchain.com

RESULTS


	Slide 1

