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Abstract

Investigating the vibro-elastic dispersion relations ot
architected materials presents a significant challenge
due to the complex interplay between the mate-
rial’s microstructure, inherent physical properties, and
wave propagation characteristics. We present disper-
sion band predictions for architected materials using
the Dual-Adapt framework, which integrates adap-
tive ansatz and adaptive penalty with the Variational
Quantum Deflation (VQD) method. Our algorithm
(Dual-Adapt-VQD) significantly improves the accu-
racy of predictions for multiple high-lying excited
states, marking a pivotal step in equipping the meta-
materials research community for the forthcoming
quantum computing era.

Main Objectives

* Improving VQD performance for circuit effi-
ciency and convergence rate.

e Circumventing the ADAPT-VQE pipeline w.r.t.
growing-depth operators and steepest descent ot
cost function gradient.

e Adjusting the penalty factors without prior
knowledge of state gaps in the studied system.
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With the reliable adaptive ansatz U,,, orthogonality between excited state |1(0%)) and the previously determined

states

Y(0o)), ..., |W(Ok—1)) for k-th excited level are ensured, achieving a user-specified tolerance of tol = 1le-6. By

applying the filter process for the minimum overlap min(L;), we obtain the expectation values Cy and Ck_1, as
well as the penalty factor 8x = (Cx — > Ck—1)/ min(Lg).

Example & Initial Prediction
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The model is (a) a square diatomic lattice with non-local interaction. With classical solver and standard VQD, we
obtain the dispersion bands (b) with user-defined penalty factors. Further, we implement the Dual-Adapt-VQD
algorithm. The highlighted (purple) scatters denote orthogonal eigenstates from parameter space (shallow: betfore
optimization, dark: after optimization) of reliable adaptive ansdtze Uz, U3, and U11 when wavenumber p = 51.
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Dual-Adapt-VOD I

{6,4_1,0,4} assigned to {R,R.},s = (x,y,z, None)
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At each wavenumber p, our goal is to obtain all pre-
cise excited states. For the k-th state, if orthogonality
with lower states is not achieved, we adaptively recon-
struct quantum ansédtze by exploring all possible gate
sequences and parameter assignments in the last £ lay-
ers. Parameter optimization is facilitated through mul-
tiple inner loops for each ansatz, while the outer loops
search for higher excited states.

As an example, we present the Dual-Adapt-VQD im-
provement for 1°* excited state regarding overlaps,
penalty factors, and convergence rate at p = 9.
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Conclusions

e Adaptive circuits improve the dispersion band
predictions with high-fidelity orthogonal states.

e Optimal ansatz adapts precise penalty for defla-
tion with etficient circuit depth and higher con-
vergence rate.

e Available for high-lying states prediction in arbi-
trary architected materials.




