
resources on the computing grids that are far beyond those avail-
able locally, and master subjects in other areas of computational
science and engineering without regard to geographical location
and schedule.

Furthermore, it provides an extensible web-computing envi-
ronment that allows a seamless interface and data flow between
different areas of computational science and engineering and
thus allows collaborations on multi-scale modeling of complex
scientific problems. There are no limitations on what aspects of
computational science and engineering can be incorporated into
CSEO. The initial efforts are on providing a workflow environ-
ment to bridge fundamental chemistry and reaction engineering
and on creating an integrated environment for atomistic simula-
tions of biological and macro-molecular systems.

CSEO is not meant to be a central web portal but rather a
world-wide extensive network of many mirror sites, hosted by
different universities, computer centers, national laboratories,
even industries, that share their public databases via a secure net-
work. This will maximize resource utilization, data generation
and sharing.

The first version of CSEO was officially released in May of
2003. Interested researchers and students can access it from
http://cseo.net. Although this version is more of a proof-of-con-
cept of the whole CSEO environment, it already provides many
useful features. In particular, it inherited all research tools for
calculating different types of rate constants for elementary chem-
ical reactions from the Virtual Kinetic Laboratory but with an
improved graphic-user-interface. Furthermore, it provides an
interface to quantum chemistry packages such as the Gaussian98
program and an information management system that allows
storage and retrieval of electronic structure properties of molec-
ular systems and transfer of such data to another application tool
for calculating their thermodynamic properties. The figure aside

CENTER FOR HIGH PERFORMANCE COMPUTING

NEWS
University of Utah Vol. 14 No.2 OCTOBER 2003

n

COMPUTATIONAL SCIENCE AND
ENGINEERING ON-LINE

The World Wide Web (Web) has changed the way we commu-
nicate in the last decade. Research in Prof. Thanh N. Truong’s
group in the Department of Chemistry in the last couple years has
been taking advantage of the Web information technology to
develop a research environment called the Virtual Kinetic
Laboratory in which students and researchers can access fore-
front research tools in chemical kinetics and computational
resources regardless of geographical location and personal
schedule. Recently the National Science Foundation Information
Technology Research Initiative awarded a grant to Prof. Truong
in collaboration with Prof. Chuck Wight also from the depart-
ment of Chemistry, Prof. Tom Cheatham from the Medicinal
Chemistry Department, Dr. Julio Facelli from CHPC, and Prof.
James Lewis from the Physics Department at the Bringham
Young University to evolve the above efforts into a broad-based
collaboratory, a laboratory without walls, for computational sci-
ence and engineering called Computational Science and
Engineering Online (CSEO).

CSEO provides a Web-based grid-computing environment in
which a researcher from an university, an industry, or a national
lab can perform research using a variety of state-of-the-art
scientific application tools, access and analyze information
from public databases and personal electronic notebook, share
and discuss results with colleagues, access computational

Thanh N. Truong, Professor, Henry Eyring Center for Theoretical
Chemistry, Dept. of Chemistry, University of Utah

n
Page 2

NEW CLUSTER AT CHPC FOR HIGH-
THROUGHPUT BLAST SEARCHING
Anita Orendt, Molecular Sciences, Center for High
Performance Computing

A new cluster, sequence.chpc.utah.edu, has been built at CHPC
for the single purpose of running thousands of BLAST searches
on a regular basis. BLAST is a package containing a set of search
routines to look for similarities between a query sequence, either
a nucleotide or a protein, and entries in a number of sequence
databases. Both the BLAST search engines and the databases are
available at the NCBI (National Center for Biotechnology
Information) at the NIH. The new cluster was built to meet the
needs of the Alejandro Sanchez Alvarado research group in the
Department of Neurobiology and Anatomy in the School of
Medicine. Working with the Sanchez group, CHPC personnel
designed and built the system as well as wrote the scripts neces-
sary to run the searches. This cluster, while built with the express
purpose of the Sanchez group needs, is available for other
University researchers with similar high-throughput BLAST
searching needs and can be scaled to meet the demand of the
workload. In the following article, the scientific problem is dis-
cussed, followed by a discussion on the design of the system and
information on the implementation.

This project was a joint effort between the staff at CHPC in
conjunction with Sofia Robb and Alejandro Sanchez Alvarado of
the Neurology and Anatomy in the School of Medicine. For
interested readers, a more detailed description of the cluster
design, implementation and deployment has been submitted for
publication in the Journal of Cluster Computing .

Description of Scientific Problem: Professor Sanchez is
working on the genome of the planarian Schmidtea mediter-
ranea. Part of the effort is to understand the relationship between
a sequence and its biological function. This is often done by
looking for similarities between the target sequence and other
genetic sequences for which the function has already been estab-
lished. Currently, there are over 6500 sequences they are ana-
lyzing. The input sequences are uploaded to sequence where the
similarity search is done using a set of search engines (BLAST)
and databases available at the NCBI. The results of the BLAST
searches are then downloaded to a system in the Sanchez labs for
incorporation into the database they maintain on the genetic
information on this organism, called SmedDb. Due to the expo-
nential growth in the amount of sequence information available
in the databases, the search must be repeated on a regular basis
or the information in the SmedDb would quickly become outdat-
ed. Therefore, the search on their entire collection of sequences
is repeated on a weekly basis. A flow chart of the search and
SmedDb update is shown in Figure 1.

System Design: The system was built in order to satisfy sev-
eral considerations. Due to constraints on cost, it was determined
that all components be commodity, "off-the-shelf" items. The ini-
tial target of workload turnaround was based on the ability to

process the SmedDb sequences in about 48 hours; however, the
computing capacity should be able to be increased as the need
arises, both in terms of the growth of the Sanchez group require-
ments as well as the addition of other users. The searches,
including job submission and retrieval of results as well as data-
base updates should be as automatic as possible to allow for
high-throughput with minimal human intervention. Also, the
database updates should not interfere with ongoing searches.

The configuration of the cluster is shown in Figure 2. It is
composed of eight dual processor AMD Athlon MP 2000+ search
nodes each with 2 GB of RAM and 60 GB local disk space and
a core file server/administrative node, a dual AMD Athlon MP
2000+ with 1GB of RAM and 240 GB of usable space in a RAID
array configuration, optimized for NFS read performance. In
addition, there are two other machines: an interactive node,
sequence, for user access and a node, seqdat, dedicated to the
database updates. All of the nodes in the cluster are internally
connected via a GigE network using a Foundry Big Iron 15000
switch supporting jumbo frames. The internal connection of the
search and file server nodes via a private vLAN makes them
inaccessible from outside the cluster sequence and seqdat are
multi-ported, connected to both to the campus wide area network
and to the private network with the rest of the nodes. This
scheme provides a higher degree of security by concentrating the
access points to two nodes and eliminating the possibility of
external threads on the rest of the nodes of the cluster. All nodes
are running LINUX Redhat 8.0 as well as PBS, Maui and QBank
for resource management, scheduling, and accounting. The latest
version of BLAST (2.2.6, Apr 2003) is installed and accessible to
all compute nodes via NFS.

Implementation: Database updates are performed on seqdat
via a nightly cron job. Using ncftpget (http://www.ncftp.com) the
files are downloaded from the NCBI's ftp site only when an
update is available. The downloaded compressed tar files are
held on a disk local to seqdat, which are then unpacked and
stored on the NFS space available to all nodes of the cluster.
Users can perform their BLAST search directly from this copy of
the database if it is relatively short; if their search is going to

is a snapshot of the GUI for molecular properties where data can
be uploaded from a client computer or retrived from the CSEO
database.

SmedDb

FASTA

upload BLAST
BLAST
Results

downloaded

parsed

Subject
Sequence

name

Query EST
Name

(SmedDb
Identifier)

Expectation
Value

Evalue =
1

No Match

Evalue >
10E-5

No Significant
Match

Evalue =
10E-5

Significant
Match

New Record
Flagged For

Categorization

Preexistent Record
With New

Description Flagged
For Recategorization

Preexistent Record
With Unchanged

Description Remains
in Current category

Descriptions
Evaluated

Processing byplanaria. neuro.utah .edu

Figure 1: Flow Chart of Search and SmedDb update process

Figure 2: Architecture of Sequence Cluster

n
Page 3

overlap a possible database update they can make a static copy of
the needed database files on either local scratch on the nodes they
are using or on global scratch space.

The search sequences are provided by the user as a set of input
files, each containing a number of sequences in FASTA format.
Each of these sequences needs to be compared to the sequences
in the database. These input files are held in a directory
$HOME/search; search results are also kept in this location in
directories given by the search date “$HOME/search/yyyy-mm-
dd”. The name of the files must somehow signify which BLAST
code to use (blastn, blastx, tblastx). In the case of the Sanchez
group this is accomplished by the presence of an n, x, or t in the
input file name. A perl script is used to create the PBS batch
scripts needed to perform the search, with minimal user supplied
information. Before creating the PBS batch scripts the user is
prompted as to whether this is a first time or a repeat search. The
only other user input is the type of search (as the Sanchez group
performs two different searches of the data). If it is a repeat
search then the script compares the date of the database in the last
search with the date of the current database. If the date of the cur-
rent database is later than the date of the database used in the last
search the batch script files are then made and subsequently sub-
mitted; otherwise the user is notified that the databases have not
been updated since the last search. The perl script also queries to
determine the number of idle search nodes. Using only a file con-
taining the input file names the perl script generates and submits
the PBS batch scripts. A round robin scheme is used to divide the
searches among the nodes available. After the batch jobs have
completed, the user can download the results back to their local
machine for incorporation into the SmedDb. New matches are
flagged for further analysis by the researcher.

Performance: Please keep in mind that the following data is
specific to the searches that the Sanchez group is performing.
The current SmedDb contains approximately 6500 input
sequences. The most common search is to perform a blastx
search on each of these sequences. This is the search that they
run on a weekly basis and it takes about 30 node hours. The sec-
ond search, performed about once a month, does the blastx
search and then checks the output to determine if any matchs
were found. If none were found a second, more time consuming
tblastx search is also completed. This "no hits found" situation
currently occurs for about 1800 of the input sequences. This

Interactive Node

Seqdat

File and
Services
Server

Public Netowork

Search Node
AMD Athlon MP 2000

Search Node
AMD Athlon MP 2000

Search Node
AMD Athlon MP 2000

Search Node
AMD Athlon MP 2000

Search Node
AMD Athlon MP 2000

Search Node
AMD Athlon MP 2000

Search Node
AMD Athlon MP 2000

Search Node
AMD Athlon MP 2000

Private Network
Switch

Foundry Big Iron,
16 GigE ports

second search takes about 650 node hours to complete.
As can be seen from these numbers, there are plenty of com-

puter cycles remaining for an increase workload, either from
growth of the Sanchez search or from other research groups.
Interested researchers are encouraged to contact me at
orendt@chpc.utah.edu or 587-9434.

PART 3: DEBUGGING
TIPS AND TRICKS FOR PROGRAM-
MING ON ICEBOX AND SIERRA

Martin Cuma, Scientific Applications Programming, Center for High
Performance Computing

In the last two newsletter articles [1,2], we have concentrated on
ways to measure and increase application's performance.
However, even the most optimal code is worthless if it does not
work correctly. In this article, we will explain ways one has to
debug an application on both a workstation and on the CHPC's
systems. We will try to present the material from a practical point
of view, starting with simple methods and tools and progressing
to those that are more complex.

Code compilation: Using various code-checking flags that the
compilers have to offer is very useful during the code develop-
ment. One of the most common errors is an array overflow, that
is, writing into an array index larger than then declared size of the
array. This error usually causes memory corruption resulting in a
segmentation fault. Virtually every compiler has a flag that
checks the array bounds (the default is to disable the array
bounds checking, as it can significantly reduce the performance).
Most compilers, including those from Compaq and PGI, take -C
flag to turn on the array bounds checking. In the Compaq C and
Fortran, one can also use -check_bounds. In the GNU compilers
(gcc, g77), this flag is -fbounds-check.

A few other common errors that can be caught by using an
appropriate flag are floating point exceptions, such as overflows
or division by zero. Some compilers, such as those from
Compaq, stop at the exception by default and display an infor-
mation message. If there is a need, this behavior can be modified
with -fpex series of flags, -fpe1 attempts to recover from the
exception and continue the execution. Conversely, both PGI and
GNU compilers on the Linux platform by default allow the pro-
gram to recover from the exception and continue running. This
behavior is possibly fatal as the errorneous value propagates
through the calculation. To enable program termination at the
floating point exception, use -Ktrap=fp flag in the PGI compil-
ers. The program terminates with a core dump, which can then be
examined in a debugger and the offending instruction located.
Unfortunately, there is no such option in the GNU compilers.
There are numerous other compiler options that can be used for
both compile time and run time checks, which can be occasion-
ally useful for bug hunting. Refer to man pages and to web-based
documentation of each of the compilers [3-5] for more details.

Debugger basics and requirements: In case the compiler
flags did not help in finding the error, it is time to call the debug-

n
Page 4

ger to the rescue. Debuggers are programs that enable the user to
load the executable in it and control the execution. As such, the
user can step through the program, stop the execution at the
desired location (breakpoint), examine values of the variables,
etc. It is generally useful to recompile the whole code with a -g
flag before loading it into the debugger. This flag inserts debug-
ging symbols into the executable, which enables the debugger to
print detailed information about the program behavior.
Debuggers can be also used with executables compiled without
the -g flag, but in that case, only limited information is available,
such as list of machine code instructions instead of the native
language source code. Also, although debugging of an optimized
code is generally permitted, since the optimizer does various
code rearrangements, the debugger may display the program
flow incorrectly. For these reasons, one should insert the -g flag
and disable optimizations before loading a program into a debug-
ger.

Text-based debuggers: Let's first talk about text-based debug-
gers. Although they are not as suitable for detailed debugging as
debuggers with a graphic user interface, they are present in sev-
eral forms on each platform and can be useful in quick determi-
nation of a crash point in case the program crashes hard, e.g. with
a segmentation fault. Every Linux machine and also many non-
Linux platforms (e.g. Compaq Sierra) have a GNU debugger,
GDB, installed. To load an executable into the debugger, just
type gdb followed by the executable name. Optionally, core file
produced by the executable can be loaded as the third argument.

In case only the executable is loaded, one can use command
run typed on the command line to run the executable. Once the
program crashes, GDB displays information on where the crash
occurs. Command backtrace then lists the whole hierarchy of
functions that called the function where the crash occurred. A
few other useful GDB commands include print to display a value
of a variable, and help to list all the commands and their syntax.
When the core file is available, GDB recreates the situation at
which the crash occurred. One can then just type backtrace to
find the position of the crash. Figure 1 shows an example of a
Fortran program that contains a division by zero. Upon compila-
tion with the exception trapping flag and execution, it crashes
producing a core dump. We then load the executable and the core

program divz

 implicit none
 real*8 a,b,c

 a = 1.0d0
 b = 0.d0
 c = a/b

 write(*,*)'c = ',c
 end

icebox:~/>%pgf77 -Ktrap=fp -g divz.f -o divzp #compile the code using
PGI
icebox:~/>%./divzp #run the executable
Floating exception (core dumped)
icebox:~/>%gdb divzp core #load the executable
and
GNU gdb Red Hat Linux (5.1-0.71) #core into GDB
....
Loaded symbols for /lib/ld-linux.so.2
#0 0x08049112 in divz () at divz.f:8 #GDB displays the
location
8 c = a/b #of the crash

Figure 1. Example of a faulty code and locating of the exception
using GDB

into the GDB to find out where the exception occurred. This way
one can very quickly find source of many errors that crash the
program.

Graphical debuggers: While text-based debuggers will do
most of the work that one needs for debugging, they are cum-
bersome to use as one needs to remember and know how to use
various text based commands. Graphical debuggers enable one to
do the same using menus and mouse clicks, which is more intu-
itive for most users. This way, it quite simple to step through the
program, analyze the data at the runtime, insert breakpoints,...
Graphical debuggers also come in many flavors, most UNIX dis-
tributions come with one, however, in this article, we will
describe only two. DDD (Data Display Debugger) is a common
Linux based debugger, which can everybody install for free on
his Linux machine. Totalview is a popular commercial debug-
ging cross-platform product, which CHPC has installed on the
Icebox and Sierra clusters.

DDD: DDD [6] installs by default with many Linux distribu-
tions, and acts as a graphical front end for text-based debuggers,
such as GDB. It would me my first choice of a graphic debugger
on a personal workstation. DDD does all a basic debugger should
do with a decent interface. The disadvantages include only serial
debugging support (in fact, one could debug a parallel program,
as GDB allows parallel debugging, but, only the master process
data are displayed), and somewhat awkward data display. Figure
2 displays a screen shot of the same program presented in Figure
1. The program code is in the middle window, data in the upper
window (note the awkward vertical display of the variables,
which is one of my complaints, it should also learn to display the
data horizontaly), GDB text output window is in the lower part.

Totalview: Totalview [6] has become a de-facto debugging
standard in the UNIX world, thanks to its complex features and
multi-platform support. Apart from basic debugging features,
such as stepping through the code, breakpoints, variable display,
etc., there are numerous advanced functions. These include vari-
ous types of conditional breakpoints (stop execution at a certain
location when a condition is met) and watchpoints (stop the exe-

Figure 2. A screenshot of DDD

n
Page 5

cution when the watched variable changes its value), intuitive
data structures display and possibility of on-the-fly patches of the
code inside the debugger without recompilation. However, the
most powerful features are the unrivalled parallel debugging
support. Totalview debugs most shared and distributed parallel
environments, including threads, OpenMP, MPI and PVM, and
mixed parallel codes, e.g. MPI-OpenMP. User can separately
work with all parallel processes and threads, execute instructions
and display variables both separately and collectively. Switching
between the processes and threads is a matter of a mouse click.
Totalview's intuitive GUI makes it possible to learn its basic use
in several minutes, the user can then learn its more advanced
features as needed in the debugging process. A screenshot of
Totalview with the simple program referred to in Figure 1 is
shown in Figure 3 . Similarly to DDD, the program code is in the
middle, four windows in the upper and lower sections of the win-
dow display stack trace (nested list of subroutines), stack frame
(variables and their values in the current context), threads (in this
case, there is only one thread as this is a serial application) and
action points (breakpoints, watchpoints,…).

Refer to the CHPC's Totalview webpage[8] for instructions on
how to use Totalview on the CHPC systems. We would also like
to take this opportunity to invite the users to attend a series of
lectures that CHPC annually presents in the fall, one of which
gives a hand-on experience with Totalview. Also, CHPC has a
Quick Start booklet, which is very useful for the beginners.
Please, contact the author of this article regarding this booklet or
anything else related to this article.

Conclusions: In this article we briefly described options one
has in debugging his/her program. First, compiler flags should be
used to try to catch the most common errors, such as array over-
flows. Then, a debugger is recommended for more complex
and detailed debugging. We noted a most common text-based

Figure 3. A screenshot of Totalview

debugger, GDB, and two graphic debuggers, free and relatively
simple DDD, and a complex and advanced Totalview, installed
on the CHPC systems.
References:
[1] Tips and tricks for programming on Icebox and Sierra part 1.
Getting the program to run fast, CHPC Newsletter Summer 2002
[2] Tips and tricks for programming on Icebox and Sierra part 2. Tools
for timing user programs and smart ways to code for speed, CHPC
Newsletter Winter 2003
[3] Tru64 compilers documentation, C:
http://h30097.www3.hp.com/compaq_c/documentation.htm, Fortran:
http://h18009.www1.hp.com/fortran/docs/index.html
[4] GNU compilers documentation, http://gcc.gnu.org/onlinedocs/
[5] PGI compilers documentation, http://www.pgroup.com/doc/
[6] DDD webpage, http://www.gnu.org/software/ddd/
[7] Totalview support page, http://www.etnus.com/Support/docs/
[8] CHPC's Totalview help webpage,http://www.chpc.utah.edu/index.
php?currentNumber=3.2.360

Aug. 13, 2003 - Construction of a $2 million supercomputer
comprised of 1,000 smaller computers will begin in September at
the University of Utah, where researchers will use the powerful
machine to tackle complex problems in biomedical research.

"This will be by far the largest computer in the state of Utah
for scientific research," says physicist Julio Facelli, director of
the University's Center for High Performance Computing.

When the so-called "metacluster" supercomputer is assembled
sometime in the winter or spring of 2004 and tests are performed
that show where it ranks in computing power, Facelli says he
expects "it will be among the 20 to 30 most powerful computers
in the world," excluding classified military and government com-
puters that are not ranked.

The Center for High Performance Computing received a
$1,531,008 grant last year from the National Center for Research
Resources at the National Institutes of Health. It will combine
that money with $500,000 in University of Utah funds to pay for
the $2 million supercomputer, which will be named Arches after
Utah's famed Arches National Park.

It is called a metacluster because it will be built from five clus-
ters, each of which in turn contains many individual computers.
Facelli says it is "like 1,000 desktop computers, all connected
together."

"This is a significant computing resource of national
caliber that will allow our researchers to tackle some of
the most challenging biomedical problems," says Facelli, an
adjunct professor of physics, chemistry and medical informatics.
"We are very interested in using this system to perform more in-
depth analysis of the vast amount of biomedical data at the
University of Utah, and couple that data analysis with advanced
simulations that will allow us to more precisely understand
biological processes."

NEW SUPERCOMPUTER DUE AT THE
UNIVERSITY -- 1,000 COMPUTER
'METACLUSTER' TO TACKLE TOUGH
BIOMEDICAL PROBLEMS

After a bidding process, the center recently chose Angstrom
Microsystems, Inc. of Boston to provide the components and
assemble the "metacluster" supercomputer, which will include
1,000 individual Opteron processors or computers made by
AMD or Advanced Micro Devices, Inc., of Sunnyvale, Calif.
Each AMD Opteron is a 1.4-gigahertz processor with at least one
gigabyte (one billion bytes) of memory. The Opteron processors
in the supercomputer together will have more than 1,000 giga-
bytes - or one terabyte - of memory.

"What is interesting is that the Opteron is brand new," says
computer scientist Guy Adams, assistant director for systems at
the Center for High Performance Computing. "Very few com-
puter centers in the world are using these processors."

Facelli and several other University of Utah faculty members
are listed as investigators on the federal grant that is paying for
most of the supercomputer, so they will have priority for using it.
But Facelli says free computing time on Arches also will be
available to other faculty members, with research funded by the
National Institutes of Health getting higher priority than research
funded by other sources.

By working with professors, "both graduate and undergradu-
ate students are going to have access to this first-class resource,
and they are going to generate new ideas that will better allow us
to understand biomedical systems and come up with new ways to
address health problems," Facelli says.

The main investigators on the supercomputer and research
they will use it for are:

wLisa Cannon-Albright, a professor of medical informatics, is a
genetic epidemiologist who uses Utah's extensive family
genealogies to identify genes responsible for inherited cancers
and other diseases. Existing university computers are inadequate
to allow her to analyze all members of a single family at once
when looking for disease-causing genes. The new metacluster
will allow simultaneous analysis of more family members, and
also help her identify the causes of diseases attributed to multi-
ple genes.

wGreg Voth, a professor of chemistry, uses high-performance
computers to simulate the behavior of molecules involved in
biological processes, such as the behavior of membranes in
living organisms.

wJeffrey Weiss, an associate professor of bioengineering, will use
the metacluster for studies aimed at improving detection of
changes of shape, surface area and size of body tissues. In one
study, he will use the supercomputer to compare magnetic reso-
nance images (MRI) of normal mouse brain development with
changes caused by Niemann-Pick disease type C, a defect in cho-
lesterol metabolism that kills thousands of children worldwide
each year. In another study, he will create computer simulations
of a common knee ligament injury with the eventual goal of sim-
ulating injuries to other ligaments and entire joints.

wFacelli, David Grant, a distinguished professor of chemistry,
and Ron Pugmire, a professor of chemical and fuels engineering,
use nuclear magnetic resonance (NMR) to understand the
structure of biologically important molecules. But it takes
massive computing power to convert NMR measurements
into information about the structure of molecules.

n
Page 6

wRobert Weiss, an associate professor of human genetics, studies
and compares the genomes, or genetic blueprints, of humans and
other animals, and also is involved in the search for genes that
contribute to high blood pressure, addiction and neuromuscular
diseases. Weiss now produces more genetic data than can be ana-
lyzed efficiently. The new supercomputer will give him the
added computing power he needs.

wTom Cheatham, an assistant professor of medicinal chemistry,
must crunch large amounts of data to gain a detailed picture of
the structure and behavior of large, biological molecules to
understand how biological processes work. Much of Cheatham's
work focuses on the genetic materials DNA and RNA. Cheatham
and Facelli also plan to use the new supercomputer to develop an
"expert system" that would seek to improve drug treatment of
various ailments by accurately predicting how drugs are
absorbed, distributed in the body, metabolized and excreted.

The new supercomputer metacluster will include five clusters
of Opteron processors. Adams says each cluster has a specific
function,
which means the supercomputer is much less expensive than if
all of its computers had to have the same capabilities:

wThe parallel computing cluster will contain 512 individual
Opteron computers or processors. It will be used for complex
calculations that can be run in parallel - divided among numer-
ous individual processors - and that require the processors to
communicate with each other rapidly using special networking
equipment.

wThe "cycle farm" cluster will include 328 processors. It is for
calculations that need much computer time, cannot be divided
among as many computers and do not require the processors to
communicate rapidly.

wThe data-mining cluster, with 96 individual computers, will be
used to look for patterns and relationships in large sets of data,
such as genetic information from many members of a single
extended family.

wThe visualization cluster will have 18 processors to deal with
data that must be shown graphically.

wThe file system cluster will include 34 computers to store the
output of calculations from the other clusters.
wThe last 12 processors of the 1,000 in Arches will be used to
control the supercomputer.

As part of the supercomputer acquisition, the university is
buying 30 terabytes of data-storage equipment from Sun
Microsystems, Inc. of Santa Clara, Calif., Facelli says.

Some cluster computers are made of individual personal
computers, with relatively bulky boxes arrayed in racks that
take a lot of space. The Opteron processors will be installed in
smaller units known as "blades" that measure 1.7 inches by 23.5
inches by 30 inches. Sixteen blades fit in a "nest," and nests are
then stacked, so the new supercomputer will occupy much less
space then a typical cluster supercomputer made of PCs.

Adams says the Center for High Performance Computing's
other cluster supercomputers eventually may be connected to
Arches and become part of the metacluster.

Born-Oppenheimer Dynamics," J. Chem. Phys. 117,
8694-8704 (2002)

Hart, K. A., W. J. Steenburgh, D. J. Onton, and A.
J. Siffert, 2003: "An evaluation of mesoscale model
based model output statistics (MOS) during the
2002 Olympic and Paralympic Winter Games."
Accepted by Wea. Forecasting.

Horel, J, T. Potter, L. Dunn, W. J. Steenburgh, M.
Eubank, M. Splitt, and D. J. Onton, 2002: "Weather
support for the 2002 Winter Olympic and
Paralympic Games." Bull. Amer. Meteor. Soc., 83,
227-240.

Mass, C. F., and W. J. Steenburgh, 2000: "An
observational and numerical study of an orographi-
cally trapped wind reversal along the west coast of
the U.S." Mon. Wea. Rev., 128, 2363-2396.

Onton, D. J., and W. J. Steenburgh, 2001:
"Diagnostic and sensitivity studies of the 7
December 1998 Great Salt Lake-effect snowstorm."
Mon. Wea. Rev., 129, 1318-1338.

Onton, Daryl. Ph.D.: An observational and numeri-
cal modeling investigation of Great Salt Lake-effect
snow. Doctoral Dissertation, University of Utah,
2002.

Schultz, D. M., W. J. Steenburgh, R. J. Trapp, J.
Horel, D. E. Kingsmill, L. B. Dunn, W. D. Rust, L.
Cheng, A. Bansemer, J. Cox, J. Daugherty, D. P.
Jorgensen, J. Meitin, L. Showell, B. F. Smull, K.
Tarp, and M. Trainor, 2002: "Understanding Utah
winter storms: The Intermountain Precipitation
Experiment." Bull. Amer. Meteor. Soc., 83, 189-210.

Siffert, Andy. M.S.: Point-specific MOS forecasts for
the 2002 Winter Games. Master's Thesis,
University of Utah, 2001.

Steenburgh, W. J., 2002: "Using real-time
mesoscale modeling in undergraduate education."
Bull. Amer. Meteor. Soc., 83, 1447-1451.

Steenburgh, W. J., and D. J. Onton, 2001:
"Multiscale analysis of the 7 December 1998 Great
Salt Lake-effect snowstorm." Mon. Wea. Rev., 129,
1296-1317.

n
Page 7

Archibald, Gregory C. "A Study of the Composition
of Ultra High Energy Cosmic Rays Using the Fly's
Eye." Doctoral Dissertation, University of Utah,
Aug. 2002.

Ayton, G. and G. A. Voth. "Bridging Microscopic and
Mesoscopic Simulations of Lipid Bilayers," Biophys.
J. 83, 3357-3370 (2002)

Cummings, M. P., S. A. Handley, D. S. Myers, D. L.
Reed, A. Rokas and K. Winka. 2003. "Comparing
bootstrap and posterior probability values in the
four-taxon case." Systematic Biology 52:477-487.

Day, T. J. F, A. V. Soudackov, M. Cuma, U. W.
Schmitt and G. A. Voth. "A Second Generation
Multi-State Empirical Valence Bond Model for
Proton Transport in Aqueous Systems," J. Chem.
Phys. 117, 5839-5849 (2002)

Liu, Feng, Clayton Williams; Lee Siegel, science
news specialist, University of Utah Public
Relations. "Observing the 'Wings' of Atoms Study
Indicates It Is Possible to See Electrons' Orbital
Paths Around Atoms." University of Utah Press
Release. June 2003.

Myers, D. S., and M. P. Cummings. 2003.
"Necessity is the mother of
invention: a simple grid computing system using
commodity tools." Journal of Parallel and
Distributed Computing 63:578-589.

Oklejas, Vanessa; Sjostrom, Christopher; Harris,
Joel M. "Surface-Enhanced Raman Scattering
Based Vibrational Stark Effect as a Spatial Probe of
Interfacial Electric Fields in the Diffuse Double
Layer." Journal of Physical Chemistry B (2003),
107(31), 7788-7794.

Oklejas, Vanessa; Harris, Joel M. "In-Situ
Investigation of Binary-Component Self-Assembled
Monolayers: A SERS-Based Spectroelectrochemical
Study of the Effects of Monolayer Composition on
Interfacial Structure." Langmuir (2003), 19(14),
5794-5801.

Izvekov, S. and G. A. Voth, "Carr-Parrinello
Molecular Dynamics Simulation of Liquid Water:
New Results," J. Chem. Phys. 116, 10372-10376
(2002)

Schlegel, H. B., S. S. Iyengar, X. Li, J. M. Milliam,
G. A. Voth, G. E. Scuseria, and M. J. Frisch, "Ab
Initio Molecular Dynamics: Propagating the Density
Matrix with Gaussian Orbitals. III. Comparison with

BIBLIOGRAPHY UPDATES

Welcome to CHPC News!
If you would like to be added to our mailing list,
please fill out this form and return it to:

Vicky Volcik
UNIVERSITY OF UTAH
Center For High Performance Computing
155 S 1452 E ROOM 405
SALT LAKE CITY, UT 84112-0190
FAX: (801)585-5366

(room 405 of the INSCC Building)

Name:
Phone:

Department or Affiliation:
Email:

Address:
(UofU campus or U.S. Mail)

Please help us to continue to provide you with
access to cutting edge equipment.

ACKNOWLEDGEMENTS
If you use CHPC computer time or staff resources, we request that
you acknowledge this in technical reports, publications, and disser-
tations. Here is an example of what we ask you to include in your
acknowledgements:

“A grant of computer time from the Center for High Performance
Computing is gratefully acknowledged.”

Please submit copies of dissertations, reports, preprints, and
reprints in which the CHPC is acknowledged to: Center for High
Performance Computing, 155 South 1452 East, Rm #405,
University of Utah, Salt Lake City, Utah 84112-0190

Thank you for using our Systems!

UNIVERSITY OF UTAH
Center for High Performance Computing
155 South 1452 East, RM #405
SALT LAKE CITY UT 84112-0190

