
performs a memory copy from one location to another) or
directly access the memory address at which the required
variable resides. The latter approach is usually faster,
although there is still a cost associated with the MPI library
function call.

SMP machines commonly use a single process to run
a parallel program and then parallelize the problem using
threads. Threads execute within their parent process and
share its memory space and stack (memory where subrou-
tine data are allocated).

Threads can also have their specific, private data.
Since the threads share many resources with their parent
process, overhead associated with thread creation, man-
agement, and data access is lower than with processes.

Most common thread-based parallelization is per-
formed using OpenMP[2] or Posix Pthreads[3]. While the
latter is more complex and flexible, the majority of users
prefer OpenMP for its simplicity and portability.

A logical, evolutionary approach on DSMP machines
is dual level parallelism, which combines shared memory
programming (such as with Pthreads or OpenMP) for intra-
node data transfer with MPI communication between the
nodes. The aim of this article is to introduce the basics of
mixed MPI/OpenMP programming and discuss when their
use is appropriate.

Mixed MPI/OpenMP programming

Also called the hybrid programming model, message
passing is used for communication across the nodes while
OpenMP is used to access shared memory within the
node. The goal is to provide better scalability than either
MPI or OpenMP.

However, for each application, the user should evaluate
if the performance gain of MPI/OpenMP code versus pure
MPI outweighs the extra programming effort. In general,
programs with little communication (sometimes referred to
as task level or embarrassingly parallel programs) will not
benefit greatly from the hybrid parallel model, while those
with heavy inter-process communication (domain level
decomposed) will most likely run faster. The best approach
is to use MPI to parallelize on a large scale and to use
OpenMP to break up computationally demanding loops
within each MPI process.

The programming itself is relatively easy for those
who know the basics of MPI and OpenMP: first, parallel-
ize using MPI, then find loops that perform large amounts
of computation and parallelize them using OpenMP. Since
not all MPI implementations are thread safe, we recom-

Parallel computers can be divided into two main cat-
egories: shared memory processor and distributed-shared
memory processor machines.

Shared memory processor (SMP) machines enable
multiple processors to address a single memory space. In
distributed memory computers, memory allocated to each
processor is local to the processor, which means no other
processors can access that partition of memory. The data
between the processors has to be communicated, most
often via a message-passing library. Historically, SMP
systems have been the most commonly used in parallel
computing.

With the arrival of commodity clusters and portable
message passing libraries, distributed memory comput-
ing has become increasingly popular. At present, we see
a unifying trend: distributed-shared memory processor
(DSMP) parallel computers that cluster together many mul-
tiprocessor nodes. The reasons for this trend include high
hardware cost for large SMP machines, increased support
for parallelism in processor design by major manufacturers
(Intel, AMD) and lower per-processor cost of small SMP
machines (2-4 CPUs) versus single processor (common
mainboard, memory, hard drive) machines.

CHPC is increasingly moving towards this model of
computing. About 40% of the Icebox cluster and the entire
Arches cluster consist of dual processor SMP nodes. The
Sierra cluster has four CPU SMP nodes.

Distributed and shared memory programming

Most of the parallel programs at present use Message
Passing Interface (MPI)[1], which was designed to pro-
vide efficient and portable message passing for distrib-
uted memory computers. Although designed for distributed
memory systems, MPI has been ported to most SMP com-
puters as well.

The SMP performance of MPI, however, depends on
its MPI implementation. MPI has to determine if the com-
munication takes place within or outside of a node and
select the most efficient communication device for each
case. In order to communicate within the SMP node, MPI
can either pretend that each of the two processes have
distinct memory space and do a “communication” (which

n

Volume 15, Number 1 Spring, 2004University of Utah

Programming Options for
Distributed Shared Memory
Cluster Computers

Scientific Applications Programmer, Center for High Performance Com-
puting, University of Utah

Article
by Martin Cuma

News
Center
forHigh-
Performance
Computing

@ the University of Utah

mend MPI communication only in the “serial” section of the
program in which only one OpenMP thread is running per
MPI process.

To demonstrate the bottom to top approach in MPI/
OpenMP program development, we provide a simple pro-
gram for the calculation of the π number using an easily
parallelizable trapezoidal rule integral evaluation:

Figure 1 shows the serial implementation of the pro-
gram. Not shown in the figure is a custom timer routine
introduced in one of our previous newsletter articles[4]. We
divide the integral into N sections, calculate the integral
area sequentially, then print out the result and runtime.

n
Page 2

Figure 1 -- Serial version of pi code

#include <stdio.h>
#include <math.h>
#include “timer.h”

int main(int argc, char *argv[]){
const int N = 10000000000;
const double h = 1.0/N;
const double PI = 3.141592653589793238462643;
int i;
double x,sum,pi,error,time;

time = -ctimer();

sum = 0.0;

for (i=0;i<=N;i++){
 x = h * (double)i;
 sum += 4.0/(1.0+x*x);
}
pi = h*sum;

time += ctimer();

error = pi - PI;
error = error<0 ? -error:error;
printf(“pi = %18.16f +/- %18.16f\n”,pi,error);
printf(“time = %18.16f sec\n”,time);
return 0;
}

Figure 2 shows the same program with OpenMP paral-
lelization of the trapezoidal loop (in the code listing, “↵ “ indi-
cates a line continuation). Note that only one line needs to
be added to the serial code. It includes the parallel for direc-
tive and specification to determine which of the data values
are shared by threads and which are private. In addition, we
have to reduce-sum the local value of the integral.

In order to run the OpenMP job in parallel, there are two
requirements: first, it must be compiled with a compiler that
supports OpenMP (which includes most of the commercial
compilers) and the appropriate flag (usually -mp or -omp),
then the number of threads to run must be specified. The
easiest way to do this is to set the OMP_NUM_THREADS

environment variable before program execution. For more
details on how to run OpenMP programs on CHPC comput-
ers, consult our online course or help page[5,6].

The MPI version of the pi program is shown in Figure 3
(see page 3). The program is slightly more complicated due
to the fact that we must explicitly divide the work among
the parallel processes. For this, we call MPI functions that
determine the number of processors and the processor
index. We must also reduce-sum the local result.

The program is linked with the MPI libraries and run
using the mpirun command. For details on how to do this on
CHPC systems, see our online course or help page[7,8].

A final, hybrid MPI/OpenMP program is presented in
Figure 4 (see page 3). It differs from the MPI version only in
the insertion of the parallel for directive before the integral
loop. This program has to be compiled both with -mp flag
(using PGI compilers on Icebox) and with MPI libraries.

Before running the program, the user has to set the
OMP_NUM_THREADS environment variable. This may
cause problems on multiple node runs on Icebox because
the environment is not passed to the nodes by default. A
simple way to avoid these kinds of hassles is to set the
number of threads explicitly in the program by calling the
OpenMP omp_set_num_threads() function as shown in
Figure 4. Because this is an external function call, we must
include the omp.h header file in the program. Details on
how to compile and run MPI/OpenMP programs are offered
in our online course[9].

Figure 2 -- OpenMP version of pi code

#include <stdio.h>
#include <math.h>
#include “timer.h”

int main(int argc, char *argv[]){
const int N = 1000000000;
const double h = 1.0/N;
const double PI = 3.141592653589793238462643;
int i;
double x,sum,pi,error,time;

time = -ctimer();

sum = 0.0;

#pragma omp parallel for shared(N,h), ↵
 private(i,x),reduction(+:sum)

for (i=0;i<=N;i++){
 x = h * (double)i;
 sum += 4.0/(1.0+x*x);
}
pi = h*sum;

time += ctimer();

error = pi - PI;
error = error<0 ? -error:error;
printf(“pi = %18.16f +/- %18.16f\n”,pi,error);
printf(“time = %18.16f sec\n”,time);
return 0;
}

n
Page 3

#include <stdio.h>
#include <math.h>
#include “mpi.h”
#include “timer.h”

int main(int argc, char *argv[]){
const int N = 1000000000;
const double h = 1.0/N;
const double PI = 3.141592653589793238462643;
int i;
double x,sum,pi,error,time,mypi;

int myrank,nproc;

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
MPI_Comm_size(MPI_COMM_WORLD,&nproc);

time = -ctimer();

sum = 0.0;
for (i=myrank;i<=N;i=i+nproc){
 x = h * (double)i;
 sum += 4.0/(1.0+x*x);
}
mypi = h*sum;

MPI_Reduce(&mypi,&pi,1,MPI_DOUBLE,MPI_SUM,0, ↵
 MPI_COMM_WORLD);

time += ctimer();

error = pi - PI;
error = error<0 ? -error:error;
if (myrank==0){
printf(“pi = %18.16f +/- %18.16f\n”,pi,error);
}
printf(“proc %4d time = %18.16f sec\n”,myrank, ↵
 time);
MPI_Finalize();
return 0;

}

Figure 3 -- MPI version of pi code

Table 1 shows the timing of our example program.
Several notes are appropriate:

1. First, the pure OpenMP program runs faster than
pure MPI on the two processors of the SMP node. Creation
and management of OpenMP threads consume fewer
resources than in MPI processes.

2. As expected, a two processor MPI run inside of one
node is slightly less time consuming than on two nodes.
The in-node reduction operation is faster than the out-of-

Processors/threads total for the whole application

1/1 1/2 2/1in* 2/1out* 2/2 2/4 4/1

Serial (1) 14.037

OpenMP (2) 13.942 6.986

MPI (3) 14.035 7.021 7.025 3.513

MPI/OpenMP (4) 14.199 7.101 7.107 3.554

* 2/1in denotes processors in a single node; 2/1out denotes
 2 processors on 2 nodes.

#include <stdio.h>
#include <math.h>
#include <mpi.h>
#include <omp.h>
#include “timer.h”

int main(int argc, char *argv[]){
const int N = 1000000000;
const double h = 1.0/N;
const double PI = 3.141592653589793238462643;
int i;
double x,sum,pi,error,time,mypi;

int myrank,nproc;

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
MPI_Comm_size(MPI_COMM_WORLD,&nproc);

time = -ctimer();

sum = 0.0;
omp_set_num_threads(2);

#pragma omp parallel for shared(N,h,myrank,nproc), ↵
 private(i,x),reduction(+:sum)
for (i=myrank;i<=N;i=i+nproc){
 x = h * (double)i;
 sum += 4.0/(1.0+x*x);
/* printf(“%d %d %10.5f”,my_rank,i,x); */
}
mypi = h*sum;

MPI_Reduce(&mypi,&pi,1,MPI_DOUBLE,MPI_SUM,0, ↵
 MPI_COMM_WORLD);

time += ctimer();

error = pi - PI;
error = error<0 ? -error:error;
if (myrank==0){
printf(“pi = %18.16f +/- %18.16f\n”,pi,error);
}
printf(“proc %4d time = %18.16f sec\n”,myrank,time);
MPI_Finalize();
return 0;

}

Figure 4 -- MPI/OpenMP version of pi code

Table 1. Timing of example program on Icebox 1533 MHz
dual AthlonXP nodes in seconds.

node reduction involving network communication between
the two nodes.

3. Finally, and perhaps the most surprising, the mixed
MPI/OpenMP program performs worse than either pure
MPI or OpenMP code. The reason for this is probably the
low granularity of our problem. The extra time caused by
the scheduling overhead of the OpenMP parallel loop does
not overcome the savings of not having to do single MPI
reduction operations.

This demonstrates the fact that not every MPI applica-
tion can benefit from threading on DSMPs. On the other
hand, since MPI reduction operations tend to scale poorly
with large numbers of processors, the MPI/OpenMP pro-
gram performance may get closer to that of pure MPI on
large numbers of processors.

n
Page 4

On the Scene: IEEE/ACM
SuperComputing
Conference 2003

Digital Communication & Visualization, Center for High Performance
Computing, University of Utah

Report
by Sam Liston

The University of Utah’s participation in the IEEE/ACM
SuperComputing Conference 2003 (a.k.a. “SC2003”) was
a great success. CHPC, in cooperation with the Scientific
Computing and Imaging Institute (SCI) and the Center
for the Simulation of Accidental Fires and Explosions (C-
SAFE), was able to put together a booth that effectively
displayed our current work as well as showcase our future
endeavors.

One such endeavor is the soon to be implemented
NIH Bioinformatics Cluster named “Arches.” CHPC had 48
nodes of the data mining portion of Arches on the exhibit
floor, being used by researchers from the University of Utah
and Los Alamos National Lab. Having such a large produc-
tion machine on the floor of SC was a first for CHPC. It
generated a good volume of traffic and interest.

Some of this
interest stemmed
from a bit of extra
and unexpected
recognition at the
AMD booth, where
it was advertised
that the University
of Utah would soon
have the largest
total Opteron-
based cluster. The additional traffic generated by this
advertisment resulted in a good amount of Arches-related
discussion and Q&A , making the cluster a valuable addi-
tion to the booth.

Many other CHPC-supported projects were repre-
sented in the booth as well. A number of video interviews
and posters discussed topics such as meteorology, mod-
ern dance, telemediated arts, computational chemistry, and

FYI

¤ CHPC’s seminars are back! For up to date informa-
tion on schedules, descriptions, and for information on
past seminars, check the CHPC seminar web page:
http://www.chpc.utah.edu/~baites/seminars.html

Conclusions

In this article, we introduced the concept of hybrid MPI/
OpenMP programming on distributed shared memory com-
puters. The goal was to reduce the program execution over-
head on a multiprocessor node by changing from heavy-
weight processes to lightweight threads and by avoiding
inter-process MPI communication function calls. As dem-
onstrated in our examples, the introduction of OpenMP into
existing MPI code is relatively straightforward. Distributed
code that uses communication heavily will benefit the most;
embarrassingly parallel programs that do a minimal amount
of communication may even see decreases in performance
due to OpenMP thread scheduling overhead.

References

[1] Message Passing Interface standard: http://www-
unix.mcs.anl.gov/mpi/
[2] OpenMP standard: http://www.openmp.org/
[3] POSIX Pthreads API, ANSI/IEEE POSIX 1003.1c stan-
dard (1995), good tutorial: http://www.llnl.gov/computing/
tutorials/workshops/workshop/pthreads/MAIN.html
[4] “Tips and tricks for programming on Icebox and Sierra
part 2.” Tools for timing user programs and smart ways to
code for speed, CHPC Newsletter Winter 2003
[5] CHPC’s C and Fortran help webpage: http://
www.chpc.utah.edu/index.php?currentNumber=3.2.50,
http://www.chpc.utah.edu/index.php?currentNumber=
3.2.110
[6] CHPC’s “Introduction to programming with OpenMP”
course: http://www.chpc.utah.edu/general/short_courses/
intro_omp/
[7] CHPC’s MPI help webpage: http://www.chpc.utah.edu/
index.php?currentNumber=3.2.200
[8] CHPC’s “Introduction to programming with MPI” course:
http://www.chpc.utah.edu/general/short_courses/intro_mpi/
[9] CHPC’s “Hybrid MPI/OpenMP” course: http://
www.chpc.utah.edu/general/short_courses/index.html

¤ CHPC presents ”Introduction to CHPC” on the 1st
Tuesday of every month. Please join us for our next
one on April 6th at 1:00 p.m. in the INSCC Auditorium.
Please see http://www.chpc.utah.edu/index.php?cur-
rentNumber=1.4 for more details.

¤ When creating works that require CHPC resources,
please remember to cite CHPC’s contributions in
your final product. These citations play a vital role in
our ability to continue providing these services!

n
Page 5

genomics. In the video interviews, individuals discussed
their current research and theorized on the possible impacts
of their work. These interviews were taped, captured and
then compiled onto DVD.

Another integral part of the booth contained two large
8 ft. by 4 ft. screens, on which four projectors displayed
images highlighting the University of Utah (campus, stu-
dents, sports, etc) as well as visualizations from various
groups showing off their research.

This was our most visible booth to date. Though its
construction, which consisted of an exposed PVC pipe
skeleton supported by paneled walls, had a rough “indus-
trial” look to it, its towering 12 ft. structure and displays of
constantly moving images were visible from a good portion
of the conference hall.

This was the 15th
anniversary of the
annual conference and
the first time for it was
held in Phoenix, AZ. It
was also the most suc-
cessful to date. Overall
attendance surpassed
7,600, exceeding last
year’s record by 300
attendees. This was
also the largest concern-
ing exhibits and space.
The conference boasted
219 booths consisting
of both industry and
research exhibits, occu-
pying nearly 100,000

square feet of floor space.
Some additional highlights of the conference came

from an event known as the “Bandwidth Challenge”. In this
contest, teams are challenged to push as much data as
possible in a set amount of time. The winners, a team from
the Stanford Linear Accelerator and Los Alamos National
Lab, were able to achieve a sustained network throughput
of 23.21 Gb/sec., which beat out last years winners by 5
Gb/sec. The total amount of data that the team moved in
the allotted time exceeded 6,500 Gb.

SuperComputing 2004 will be held in Pittsburgh, PA, at
the new David L. Lawrence Convention Center. CHPC will
be there, and hopes to have a bigger, better booth, repre-
senting and highlighting the work of an even larger number
of its supported projects.

If you are interested in having your research high-
lighted in next year’s booth you can contact Sam Liston at
stliston@chpc.utah.edu for more information.

This year’s Posters on the Hill event took place from
8:00am to 1:00pm on Thursday, January 22. A total of 30
posters were presented. All 19 women and 11 men who
participated are graduates from high schools within the
state of Utah.

Two focal points of this year’s event were a print
entitled “Sagebrush to Steel” by Stefanie Joos Dykes of
the Art Department from the College of Fine Arts, and a
formula racer designed, fabricated, and raced by a team of
students under the direction of faculty member Sam Drake
in the Mechanical Engineering Department and the School
of Computing.

There were
posters from across
the University cov-
ering a wide vari-
ety of disciplines.
From the College
of Science, we had
representation from
Biology, Chemistry,
Mathematics, and
Physics. From
the College of
Engineering, we
had Bioengineering,

Chemical & Fuels Engineering, Electrical & Computer
Engineering, Mechanical Engineering, and the School of
Computing. The Medical Community provided posters from
Human Genetics, Medicinal Chemistry, Ophthalmology,
Orthopedics, Pediatrics, Pharmaceutics and Pharmaceutical
Chemistry, and Oncological Sciences. The Center for High
Performance Computing, the Cardiovascular Research and

On the Scene: Research
Posters on the Hill
2004

Staff Scientist, Visualization Group, Center for High Performance Com-
puting, University of Utah

Report
by Robert McDermott

For the latest news, system status, and downtimes,
see the CHPC home page: http://www.chpc.utah.edu/

FYI

A visualization of how DNA bends and
writhes (by Elijah Gregory, Thomas
Cheatham, and Julio Facelli)

n
Page 6

Training Institute, the Graduate
School of Architecture, the
Art Department, and the
Psychology Department had
posters presented as well.

Interesting individual
imagery was submitted by
Tom Johnson and Steven
Parker from the School of
Computing; Elijah Gregory
from the Deptartment
of Medicinal Chemistry,
Thomas Cheatham from the
Department of Pharmaceutics
and Pharmaceutical Chemistry,
and Julio Facelli from the Center for High Performance
Computing; and Amy Heaton and Ken Golden from the
Department of Mathematics.

Visually striking posters were produced by Tracy
Zundel and Katharine Ullman in Oncological Sciences;
Shawn Olsen and Erik Jorgensen from Biology; and
Harmony Hofstetter and Julio Bermudez from the School
of Architecture.

The highlight of this year’s
event was Governor Olene
Walker, who took a break
from her “State of the State”
address preparations to view
the posters and to pose for
some photographs with the
formula race car, which Sam
Drake and seven of his stu-
dents hand-carried up the
front steps of the State Capitol
building at 7:30am.

An example of how tone
mapping retains color and
brightness (by Tom Johnson
and Steven Parker, School of
Computing)

Full size, complete versions of the graphics shown in this report
can be found in the “Research” section of the CHPC website:
http://www.chpc.utah.edu/other/research/

Governor Olene Walker
takes a moment to pose for
some photographs with the
formula racer

Burns, Thomas J., Edward L. Kick and Byron L. Davis.
“Theorizing Linkages Between the Natural Environment
and the Modern World-System: Deforestation in the Late
20th Century.” Journal of World Systems Research, IX:2
357-390 (Summer 2003).

Cheng, W.Y.Y. and W.J. Steenburgh, 2003: The Realtime
Weather and Forecasting Research Model for the Western
United States at the NOAA Cooperative Institute for
Regional Prediction. Tenth Annual Workshop on Weather
Prediction in the Intermountain West, Desert Research
Institute, Reno, Nevada, November 6, 2003.

Facelli, Julio. “Calculations of Chemical Shielding: Theory
and Applications.” Concepts in Magnetic Resonance Part
A, 20A:1 42-69 (2004)

Jenkins, M.A. “A examination of the sensitivity of numeri-
cally simulated wildfires to low-level atmospheric stability
and moisture, and the consequences for the Haines Index.”
Int. J. of Wildland Fire 11:4, 213-23 (2002)

Jenkins, M. A. “Investigating the Haines Index using parallel
model theory.” Int. J. of Wildland Fire. (2004)

Jenkins, M. A., and Ruiyu Sun. “What coupled wildfire-
atmosphere numerical models can do.” 4th International
Workshop on Disturbance Dynamics in Boreal Forest.
Prince George, British Columbia, August, 2002.

Jenkins, M. A., S. K. Krueger, and R. Sun. “Using a sim-
ple parallel model to investigate the Haines Index.” 5th
Symposium on Fire and Forest Meteorology, American
Meteorological Society, Orlando, FL. 2003.
(A summary of this work in the December 2003 Bulletin of
the American Meteorological Society.)

Sun, Ruiyu. “Effect of low-level atmospheric stability and
moisture on wildfire behavior.” M. Sc. Thesis, University of
Utah, 2003.

Sun, R., and M. A. Jenkins. “Effects of near-surface atmo-
spheric stability and moisture on wildfire behavior and con-
sequences for the Haines Index.” 5th Symposium on Fire
and Forest Meteorology, American Meteorological Society,
Orlando, FL. 2003.

Sun, Ruiyu, M. A. Jenkins, and S. K. Krueger. “Effects of
atmospheric stability, moisture, and wind speed on wildfire
behavior and indications of Haines Index.” Submitted for
publication in special 5th Symposium on Fire and Forest
Meteorology issue of the Int. J. of Wildland Fire. 2004.

Whitaker, J., E. Ahn, P. Hari, G. A. Williams, P. C. Taylor,
and J. C. Facelli, “Indirect (J) coupling of inequivalent
75As nuclei in crystalline and glassy As2Se3 and As2Se3.”
Journal of Chemical Physics, 119:16 8519-8525 (2003)

Archbold, Gregory C. “A Study of the Composition of Ultra
High Energy Cosmic Rays Using the High Resolution Fly’s
Eye,” Doctoral Dissertation, Dept. of Physics, University of
Utah, August 2002.

Bazterra, Victor E., Marta B. Ferraro, and Julio Facelli.
“Modified Genetic Algorithm to Model Crystal Structures: III.
Determination of Crystal Structures Allowing Simultaneous
Molecular Geometry Relaxation.” International Journal of
Quantum Chemistry, 96 312-320 (2004)

Blair, Steve. “Self-focusing of narrow 1-D beams in pho-
tonic microcavity arrays,” Journal of the Optical Society of
America B 20, p. 1520-1526 (2003)

Recent Publications

CHPC Staff Directory
Administrative Staff Title Phone Email Location

Julio Facelli Director 581-7529 Julio.Facelli@utah.edu 410 INSCC
Julia Harrison Associate Director 581-5172 julia@chpc.utah.edu 430 INSCC
Guy Adams Assistant Director, Systems 585-0471 gadams@chpc.utah.edu 424 INSCC
Joe Breen Assistant Director, Networking 585-1013 jbreen@chpc.utah.edu 426 INSCC
DeeAnn Raynor Administrative Officer 581-5253 dee@chpc.utah.edu 412 INSCC
Victoria Volcik Administrative Assistant 585-3791 vicky@chpc.utah.edu 405-6 INSCC
David Weiland Administrative Assistant 581-6440 weiland@chpc.utah.edu 405-2 INSCC

Scientific Staff Exper tise Phone Email Location

James Agutter Information Visualization 581-8779 agutterja@arch.utah.edu 235 AAC
Thomas Cheatham III Biomolecular Modeling 587-9652 cheatham@chpc.utah.edu 306 INSCC
Martin Cuma Scientific Applications 587-7770 mcuma@chpc.utah.edu 418 INSCC
Byron L. Davis Statistics 585-5604 byron@chpc.utah.edu 416 INSCC
Julio Facelli Molecular Sciences 581-7529 Julio.Facelli@utah.edu 410 INSCC
Stefano Foresti Information Visualization 581-3173 stefano@chpc.utah.edu 312 INSCC
Robert McDermott Visualization 581-4370 mcdermott@chpc.utah.edu 420 INSCC
Brett Milash Biochemistry 585-6408 brett.milash@hci.utah.edu SOM
Anita Orendt Molecular Sciences 587-9434 orendt@chpc.utah.edu 422 INSCC
Alun Thomas Bioinformatics 587-9309 alun@gene.pi.med.utah.edu Research Park

Systems/Network Staff Title Phone Email Location

Irvin Allen Desktop Support 581-7996 iallen@chpc.utah.edu 405-29 INSCC
Wayne Bradford Cluster Grid Administrator 585-1333 wayne.bradford@chpc.utah.edu 405-40 INSCC
Erik Brown Computation Cluster Admin. 581-3442 erik@chpc.utah.edu 405-31 INSCC
Joe Clyde Network Operations Engineer 585-2548 joe.clyde@chpc.utah.edu 405-38 INSCC
Geoff Fritz Enterprise Server Administrator 585-0567 gfritz@chpc.utah.edu 405-41 INSCC
Brian Haymore Computation Cluster Admin. 585-1755 brian@chpc.utah.edu 428 INSCC
Samuel T. Liston Digital Communication & 585-1577 stliston@chpc.utah.edu 405-30 INSCC
 Visualization
Jimmy Miklavcic Multimedia, Telematic & 585-9335 jhm@chpc.utah.edu 296 INSCC
 Digital Communication
Ron Price Cluster Grid Administrator 560-2305 rprice@eng.utah.edu 405-19 INSCC
David Richardson Computer Technician 581-8646 drr@chpc.utah.edu 405-8 INSCC
Steve Smith Desktop Support 581-7552 steve@chpc.utah.edu 405-14 INSCC
Matthew Thorley Network Assistant 585-7821 ruach@chpc.utah.edu 405-20 INSCC
Kirk VanOpdorp Computation Cluster Admin. 585-9299 kirk@chpc.utah.edu 405-31 INSCC
Alan Wisniewski Network Assistant 580-5835 quantix@chpc.utah.edu 405-21 INSCC

User Serv ices Staff Title Phone Email Location

Nathan Barker Technical Specialist N/A barkern@chpc.utah.edu 294 INSCC
Eric Hansen Technical Assistant N/A ehansen@chpc.utah.edu 405-27 INSCC
Shawn Lyons Network Assistant 581-4439 slyons@chpc.utah.edu 405-22 INSCC
Murat Manguoglu Technical Specialist N/A murat@chpc.utah.edu 405-11 INSCC
Beth Miklavcic Multimedia Design, Digital Video 585-1067 bam@chpc.utah.edu 405-13 INSCC
Erik Ratcliffe Graphic & Web Design N/A erat@chpc.utah.edu 405-14 INSCC
Jason Rino Systems Assistant 581-4439 jason@chpc.utah.edu 405-22 INSCC

The University of Utah seeks to provide equal access to its programs, services, and ac t i vi t ies to people with d isabili-
ties. Reasonable prior notice is needed to arrange accommodations.

n
Page7

Welcome to CHPC News!
If you would like to be added to our mailing list,
please fill out this form and return it to:

 Vicky Volcik
 UNIVERSITY OF UTAH
 Center For High Performance Computing
 155 S 1452 E ROOM 405
 SALT LAKE CITY, UT 84112-0190
 FAX: (801)585-5366

(room 405 of the INSCC Building)

Name:
Phone:

Department or Affiliation:
Email:

Address:
(UofU campus or U.S. Mail)

Please help us to continue to provide you with
access to cutting edge equipment.

ACKNOWLEDGEMENTS
If you use CHPC computer time or staff resources, we request
that you acknowledge this in technical reports, publications, and
dissertations. Here is an example of what we ask you to include in
your acknowledgements:

 “A grant of computer time from the Center for High Performance
Computing is gratefully acknowledged.”

Please submit copies of dissertations, reports, preprints, and
reprints in which the CHPC is acknowledged to: Center for
High Performance Computing, 155 South 1452 East, Rm #405,
University of Utah, Salt Lake City, Utah 84112-0190

Thank you for using our Systems!

UNIVERSITY OF UTAH
Center for High Performance Computing
155 South 1452 East, RM #405
SALT LAKE CITY, UT 84112-0190

