
Introduction to Linux 
Part 2b: basic scripting

Brett Milash and Wim Cardoen
CHPC User Services



Overview

• Scripting in Linux
–What is a script?
–Why scripting?
– Scripting languages + syntax
– Bash/tcsh scripting exercises



What is a script?
• A script is a collection of linux commands that:
– are stored in a file
– the file MUST be executable (with one exception…)
– commands are separated by:

• either a carriage return (new line)
• or by the semi colon (“;”)

– executed sequentially until
• the end of the file has been reached 
• or an error is met



Why scripting?

Scripting is a timesaver

The real question: When should you script?



Scenarios for scripting

• Using the batch system at CHPC (discussed in 
the talk on Slurm Basics) 

• Automating pre- and post- processing of 
datasets 

• Performing lots of menial, soul draining tasks 
efficiently and quickly (like building input files)

https://www.chpc.utah.edu/presentations/IntroSlurmAndSlurmBatchScripts.php


How long should you script? 
The image part with relationship ID rId3 was not found in the file.

http://xkcd.com/1205/

Task time saver calculator: http://c.albert-thompson.com/xkcd/

http://c.albert-thompson.com/xkcd/


What to script in?

• Basic scripting needs can be done in the Bash 
shell or the Tcsh/Csh shell.

• If you have more complicated tasks to 
perform, then you should consider something 
more advanced (like python* or matlab).

• If your workload is computationally heavy, you 
should be consider to write your application in 
a compiled language (e.g. C/C++, Fortran, …).

*CHPC also holds a three part workshop focusing on Python 

http://www.python.org/
http://www.mathworks.com/


bash and tcsh
• A Shell is:

a. user interface to the OS’s services
b. a layer (=> shell) around the kernel
c. a programming language

• CHPC currently supports 2 types of “shell-languages”/shells:
a. B(ourne) Again Shell (bash)
b. Csh/Tcsh shell

• Syntactic differences are significant (and quirky) => NO MIXING ALLOWED
• Some programs do not support different shells (rather rare)
• Very easy to switch between shells 
• What shell do I currently use?  echo $SHELL

WHILE LEARNING TO SCRIPT,
PICK ONE AND STICK WITH IT.



Can I change my shell? Yes, you can

• To change your default shell: go to chpc.utah.edu 
and login with your U of U credentials. You will be 
presented with your profile, which will have a link  
“Edit Profile”. A new dialogue will show, and you 
will see an option to change shell. Change it to 
whatever you want, and save it. Changes will go 
through in about 15 minutes. 

• (Also can be used to change your email on record, 
please do this if you change email addresses.) 



Getting the exercise files
• For today’s exercises, open a session to 

linuxclass.chpc.utah.edu and run the following 
commands:

# Either:
cp ~u0424091/LinuxScripting1.tar.gz .
# Or:
wget https://www.chpc.utah.edu/presentations/LinuxScripting1.tar.gz
# Then:
tar  xvfz LinuxScripting1.tar.gz
cd LinuxScripting1/
# Pro tip: copy the URL above from our web page!

https://www.chpc.utah.edu/presentations/LinuxScripting1.tar.gz


Write your first script (ex1)
• Open a file named ex1.sh (Bash) or ex1.csh (Tcsh) using Vi
• ‘#’ character: start of a comment 
• Top line always contains the ‘she-bang’ followed by the language interpreter:

‘#!/bin/bash’    (if you use Bash)   or
‘#!/bin/tcsh’     (if you use Tcsh)

• Put the following content in a file:
echo " My first script:"
echo " My userid is:"
whoami
echo " I am in the directory:"
pwd
echo "Today's date:"
date
echo " End of my first script"

• Make the script executable and execute it:
chmod +x ex1.sh        or  chmod +x ex1.csh
./ex1.sh                             or  ./ex1.csh



A comment about running programs

• When you execute a command, the shell must first find 
the program you want to run

• Either:
– You tell the shell where to find the program (e.g. “./ex1.sh”)
– The shell must search for the program

• PATH environment variable
– List of directories where the shell searches
– Bash: echo $PATH
– Tcsh: echo $path

• “which” command: shows where a command is found



Setting and Using Variables
#!/bin/bash
#set a variable (no spaces!)
VAR="hello bash!"
#print the variable
echo $VAR

#make it permanent
export VAR2="string"
echo $VAR2

#remove VAR2
unset VAR2

#!/bin/tcsh
#set a variable
set VAR = "hello tcsh!"
#print the variable
echo $VAR

#make it permanent (no =)
setenv VAR2 "string"
echo $VAR2

#remove VAR2
unset VAR2

Be careful what you export! Don’t overwrite something important!



Script Arguments
#!/bin/bash
ARG1=$1
ARG2=$2
#ARG3=$3, and so on
echo $ARG1
echo $ARG2

#!/bin/tcsh
set ARG1 = $1
set ARG2 = $2
#set ARG3 = $3, so on
echo $ARG1
echo $ARG2

If the script is named “myscript.sh” (or “myscript.csh”), the script
is executed with “./myscript.sh myarg1  myarg2   ...   myargN”
$0 : returns the name of the script
$#: returns the # arguments



Using grep and wc

• grep searches files for test strings and outputs 
lines that contain the string
– VERY fast, very easy way to parse output
– can use regex (regular expression) and file patterns
– use backslash (\) to search for special characters (e.g. 

to search for "!" use "\!")
grep "string" filename

• wc can count the number of lines in a file
wc -l filename



Command line redirection (refresher)

• You can output to a file using the “>” operator.
cat filename > outputfile

• You can append to the end of a file using “>>”
cat filename >> outputfile

• You can redirect to another program with “|”
cat filename | wc –l 



Exercise 2
Write a script that takes a file as an argument, searches the file 
for exclamation points with grep, puts all the lines with 
exclamation points into a new file, and then counts the number 
of lines in the file. Use “histan-qe.out” as your test file. 

Don’t forget #!/bin/bash or #!/bin/tcsh

Variables  - Bash style:  VAR="string"  (no spaces!)
Tcsh style: set VAR = “string”

Arguments  - $1  $2  $3  ...

Grep - grep 'string' filename 

Counting Lines  - wc –l filename



Solution to Exercise 2
#!/bin/bash
INPUT=$1
grep '\!' $INPUT > outfile
wc -l outfile

#!/bin/tcsh
set INPUT = $1
grep '\!' $INPUT > outfile
wc -l outfile

The output from your script should have been  “34”.  



Questions? Email 

helpdesk@chpc.utah.edu
or 

brett.milash@utah.edu
or

wim.cardoen@utah.edu


