
1

Getting Started with
OSG Connect

~ an Interactive Tutorial ~

Emelie Harstad <eharstad@unl.edu>, Mats Rynge <rynge@isi.edu>,
Lincoln Bryant <lincolnb@hep.uchicago.edu>, Suchandra Thapa <sthapa@ci.uchicago.edu>,

Balamurugan Desinghu <balamurugan@uchicago.edu>, David Champion <dgc@uchicago.edu>,
Chander S Sehgal <cssehgal@fnal.gov>, Rob Gardner <rwg@hep.uchicago.edu>,

<connect-support@opensciencegrid.org>

Topics

2

• Properties of DHTC/OSG Jobs
• Getting Started with OSG Connect – Accounts/Logging In/Joining Projects
• Introduction to HTCondor

 Exercise: Submit a Simple Job
• Distributed Environment Modules

 Exercise: Submit a Batch of R Jobs
• Job Failure Recovery (with short exercise)
• Handling Data: Stash

 Exercise: Transfer Data with Globus
 Exercise: Access Stash from Job with http

• Workflows with DAGMan
 Exercise: DAG NAMD Workflow

• BOSCO – Submit locally, Compute globally
 Exercise: Submit Job from Laptop Using BOSCO

Properties of DHTC Jobs

3

• Run-time: 1-24 hours

• Single-threaded

• Require <2 GB Ram

• Statically compiled executables (transferred with jobs)

• Input and Output files transferred with jobs, and reasonably sized: <10

GB per job (no shared file system on OSG)

Properties of DHTC Jobs

4

These are not hard limits!
• Checkpointing (built-in to application) – for long jobs that are preempted
• Limited support for larger memory jobs
• “Partitionable” slots – for parallel applications using up to 8 cores
• OASIS modules – a collection of pre-installed software packages

• Run-time: 1-24 hours

• Single-threaded

• Require <2 GB Ram

• Statically compiled executables (transferred with jobs)

• Input and Output files transferred with jobs, and reasonably sized: <10

GB per job (no shared file system on OSG)

Getting Started with OSG Connect

5

1. Sign up for an account:
Follow the steps at http://osgconnect.net/signup

1. Add your SSH public key to your account

a. Sign in at https://portal.osgconnect.net
 (using your campus credentials - InCommon / CILogon)

b. Managed Identities -> add linked identity -> Add SSH Public Key
c. Paste contents of ~/.ssh/id_rsa.pub into the text box
 (Help creating a SSH key pair: https://osgconnect.net/keygen)

3. Passwordless login:
 ssh <username>@login.osgconnect.net

4. Join a Project (more info. on next slide)

http://osgconnect.net/signup
https://portal.osgconnect.net
https://osgconnect.net/keygen

Projects in OSG Connect

6

• Projects in OSG are used for organizing groups and jobs, granting access to
resources, usage accounting.

• Every job submitted through OSG Connect must be associated with a project.

• Principal Investigators or their delegates may create projects and manage

project membership.

• To apply for a new project: https://portal.osgconnect.net
 Select: Connect -> Create a Project

• OSG Connect administrator must approve the new project

• To join a pre-existing project: https://portal.osgconnect.net

Select: Connect -> Join a Project

https://portal.osgconnect.net
https://portal.osgconnect.net

Projects in OSG Connect

7

Projects in OSG Connect

8

How to select your project name when submitting a job on OSG Connect

OSG Connect Project Management Commands
cat .project # list user’s projects (contents of ~/.project file), and show

current project.

connect show-projects # list user’s projects

connect project

allows user to change current project

9

How to Use the Tutorials

The OSG Connect login node provides a built-in tutorial command that
provides users with tutorials for many tools and software packages

Commands:

$ tutorial # will print a list tutorials and a brief
 description for each.

$ tutorial <name> # will load a specific tutorial.
 Creates a directory in your
 current location containing all
 the files necessary to run the
 tutorial.

Intro to HTCondor

10

• HTCondor is the OSG Job Scheduler
• Provides an overlay: Collection of compute nodes at different OSG sites appears

as a single resource to users
• Simplifies job submission: only one submission necessary to access nation-wide

pool of resources
• Made possible by flocking

Basic procedure:

1) Move all job files to the submit node (or create files directly on the node)
2) Log in to the submit node (ssh <username>@login.osgconnect.net)
3) Create a Condor submit script (contains information for the job scheduler)
4) Submit the job using the ‘condor_submit’ command.

Intro to HTCondor

11

file: tutorial03.submit
Universe = vanilla
Executable = short.sh
Arguments = 5 # to sleep 5 seconds
Error = log/job.err.$(Cluster)-$(Process)
Output = log/job.out.$(Cluster)-$(Process)
Log = log/job.log.$(Cluster)
+ProjectName="ConnectTrain"
Queue 100

Anatomy of a simple condor submit script:

Intro to HTCondor

12

file: tutorial03.submit
Universe = vanilla
Executable = short.sh
Arguments = 5 # to sleep 5 seconds
Error = log/job.err.$(Cluster)-$(Process)
Output = log/job.out.$(Cluster)-$(Process)
Log = log/job.log.$(Cluster)
+ProjectName="ConnectTrain"
Queue 100

Anatomy of a simple condor submit script:

Instructs Condor to use ‘vanilla’
execution environment

Intro to HTCondor

13

file: tutorial03.submit
Universe = vanilla
Executable = short.sh
Arguments = 5 # to sleep 5 seconds
Error = log/job.err.$(Cluster)-$(Process)
Output = log/job.out.$(Cluster)-$(Process)
Log = log/job.log.$(Cluster)
+ProjectName="ConnectTrain"
Queue 100

Anatomy of a simple condor submit script:

Instructs Condor to use ‘vanilla’
execution environment

Name of the executable file (will
automatically be transferred with
the job)

Intro to HTCondor

14

file: tutorial03.submit
Universe = vanilla
Executable = short.sh
Arguments = 5 # to sleep 5 seconds
Error = log/job.err.$(Cluster)-$(Process)
Output = log/job.out.$(Cluster)-$(Process)
Log = log/job.log.$(Cluster)
+ProjectName="ConnectTrain"
Queue 100

Anatomy of a simple condor submit script:

List of input arguments
to executable (short.sh)

Instructs Condor to use ‘vanilla’
execution environment

Name of the executable file (will
automatically be transferred with
the job)

Intro to HTCondor

15

file: tutorial03.submit
Universe = vanilla
Executable = short.sh
Arguments = 5 # to sleep 5 seconds
Error = log/job.err.$(Cluster)-$(Process)
Output = log/job.out.$(Cluster)-$(Process)
Log = log/job.log.$(Cluster)
+ProjectName="ConnectTrain"
Queue 100

Anatomy of a simple condor submit script:

List of input arguments
to executable (short.sh)

Error, Output, Log files
are created on execute
node and transferred
back to login node when
job finishes.
If subdirectory (e.g. log/)
is specified, it must exist.

Instructs Condor to use ‘vanilla’
execution environment

Name of the executable file (will
automatically be transferred with
the job)

Intro to HTCondor

16

file: tutorial03.submit
Universe = vanilla
Executable = short.sh
Arguments = 5 # to sleep 5 seconds
Error = log/job.err.$(Cluster)-$(Process)
Output = log/job.out.$(Cluster)-$(Process)
Log = log/job.log.$(Cluster)
+ProjectName="ConnectTrain"
Queue 100

Anatomy of a simple condor submit script:

List of input arguments
to executable (short.sh)

Error, Output, Log files
are created on execute
node and transferred
back to login node when
job finishes.
If subdirectory (e.g. log/)
is specified, it must exist.

Specify the project name
(used for accounting). This
line is no longer required.
Users can set the project
name before submitting
the job with the ‘connect
project’ command.

Instructs Condor to use ‘vanilla’
execution environment

Name of the executable file (will
automatically be transferred with
the job)

Intro to HTCondor

17

file: tutorial03.submit
Universe = vanilla
Executable = short.sh
Arguments = 5 # to sleep 5 seconds
Error = log/job.err.$(Cluster)-$(Process)
Output = log/job.out.$(Cluster)-$(Process)
Log = log/job.log.$(Cluster)
+ProjectName="ConnectTrain"
Queue 100

Anatomy of a simple condor submit script:

List of input arguments
to executable (short.sh)

Error, Output, Log files
are created on execute
node and transferred
back to login node when
job finishes.
If subdirectory (e.g. log/)
is specified, it must exist.

Start 100
identical jobs

Instructs Condor to use ‘vanilla’
execution environment

Name of the executable file (will
automatically be transferred with
the job)

Specify the project name
(used for accounting). This
line is no longer required.
Users can set the project
name before submitting
the job with the ‘connect
project’ command.

Intro to HTCondor

18

file: tutorial03.submit
Universe = vanilla
Executable = short.sh

Error = log/job.err.$(Cluster)-$(Process)
Output = log/job.out.$(Cluster)-$(Process)
Log = log/job.log.$(Cluster)
+ProjectName="ConnectTrain"
Arguments = 5
Queue 50

Arguments = 10
Queue 20

Arguments = 20
Queue 30

Anatomy of a simple condor submit script:

Start 50 jobs that sleep for 5 seconds,
20 jobs that sleep for 10 seconds, and
30 jobs that sleep for 20 seconds.

Intro to HTCondor

19

file: tutorial03.submit
Universe = vanilla
Executable = short.sh
Arguments = 5 # to sleep 5 seconds
Error = log/job.err.$(Cluster)-$(Process)
Output = log/job.out.$(Cluster)-$(Process)
Log = log/job.log.$(Cluster)
+ProjectName="ConnectTrain"
Queue 100

Anatomy of a simple condor submit script:

file: short.sh automatically transferred to execute node
#!/bin/bash
short.sh: a short discovery job

printf "Start time: "; /bin/date
printf "Job is running on node: "; /bin/hostname
printf "Job running as user: "; /usr/bin/id
printf "Job is running in directory: "; /bin/pwd

echo
echo "Working hard..."
sleep ${1-15}
echo "Science complete!"

20

Exercise: Submit a Simple Job
https://confluence.grid.iu.edu/display/CON/OSG+Connect+Quickstart

$ ssh username@login.osgconnect.net
$ tutorial quickstart
$ cd ~/tutorial-quickstart
$ nano short.sh
$ chmod +x short.sh
$./short.sh
$ nano tutorial03.submit #Can also use vi/vim
$ condor_submit tutorial03.submit
$ condor_q <username>
$ watch -n2 condor_q <username> #Ctrl-c to exit
$ condor_history <jobID>
$ condor_history -long <jobID>
$ condor_history -format ‘%s\n’ LastRemoteHost <jobID>

https://confluence.grid.iu.edu/display/CON/OSG+Connect+Quickstart
mailto:username@login.osgconnect.net

Intro to HTCondor

21

HTCondor Manual: http://research.cs.wisc.edu/htcondor/manual/

Summary of Useful Condor Commands
condor_submit <filename.submit> # Submit job(s) using specified condor

submit script

condor_q <username> # List status of all uncompleted jobs
submitted by user

condor_rm <username>

Remove all jobs submitted by user

condor_rm <jobID> # Remove job <jobID>

condor_history <jobID>
condor_history -long <jobID>

Provide detailed information about
running jobs

condor_ssh_to_job <jobID> # ssh to the node where specified job is
running (useful for debugging)

http://research.cs.wisc.edu/htcondor/manual/

Distributed Environment Modules

22

• Modules give users access to a collection of software, libraries, and compilers at
OSG compute sites.

• Provides consistent environment across sites for testing and running workflows.

• Modules are published via the distributed file system OASIS, which is available on
most sites running OSG Connect jobs.

• Usage: module load python/2.7

• More information and list of available modules:
https://confluence.grid.iu.edu/display/CON/Distributed+Environment+Modules

https://confluence.grid.iu.edu/display/CON/Distributed+Environment+Modules

Distributed Environment Modules

23

Useful Module Commands

module avail # List all available modules/versions

module load <module_name> # Load a module (sets up environment
for using software or libraries)

module unload <module_name> # Unload a module

module list # List all loaded modules

module spider <module_name> # List module dependencies

module keyword <key1> <key2> … # List modules matching any of the
specified keywords

 DON’T FORGET!!!! To use modules, first issue the following command:
source /cvmfs/oasis.opensciencegrid.org/osg/modules/lmod/5.6.2/init/bash

24

Exercise: A Monte Carlo method for estimating the value of Pi.

(Source: http://en.wikipedia.org/wiki/Monte_Carlo_method)

Take a random sampling of n points on
the square inscribed by a unit circle.

Ratio of number of points inside the
circle to the total number of trials, n,
approaches pi/4 as n increases.

The key is to have a large number of
samples, n.

Break the problem down into smaller
jobs (smaller n), and take the average
of the results.

Distributed Environment Modules

http://en.wikipedia.org/wiki/Monte_Carlo_method)_

Distributed Environment Modules

25

file: R.submit
universe = vanilla

Executable = R-wrapper.sh
arguments = mcpi.R
transfer_input_files = mcpi.R

output = job.out.$(Process)
error = job.error.$(Process)
log = job.log.$(Process)

requirements = \
(HAS_CVMFS_oasis_opensciencegrid_org \
 =?= TRUE)
queue 100

Submit Script:

file: R.submit
universe = vanilla

Executable = R-wrapper.sh
arguments = mcpi.R
transfer_input_files = mcpi.R

output = job.out.$(Process)
error = job.error.$(Process)
log = job.log.$(Process)

requirements = \
(HAS_CVMFS_oasis_opensciencegrid_org \
 =?= TRUE)
queue 100

Distributed Environment Modules

26

Submit Script:
 file: R-wrapper.sh

#!/bin/bash
source /cvmfs/oasis.open \
 sciencegrid.org/osg/modules/ \
 lmod/5.6.2/init/bash
module load R
Rscript $1

Wrapper Script: sets up the environment,
loads R module, and invokes R script.

Distributed Environment Modules

27

file: R.submit
universe = vanilla

Executable = R-wrapper.sh
arguments = mcpi.R
transfer_input_files = mcpi.R

output = job.out.$(Process)
error = job.error.$(Process)
log = job.log.$(Process)

requirements = \
(HAS_CVMFS_oasis_opensciencegrid_org \
 =?= TRUE)
queue 100

Submit Script:
 file: R-wrapper.sh

#!/bin/bash
source /cvmfs/oasis.open \
 sciencegrid.org/osg/modules/ \
 lmod/5.6.2/init/bash
module load R
Rscript $1

Wrapper Script: sets up the environment,
loads R module, and invokes R script.

requirements = (HAS_CVMFS_oasis_opensciencegrid_org =?= TRUE)

Distributed Environment Modules

28

file: R.submit
universe = vanilla

Executable = R-wrapper.sh
arguments = mcpi.R
transfer_input_files = mcpi.R

output = job.out.$(Process)
error = job.error.$(Process)
log = job.log.$(Process)

requirements = \
(HAS_CVMFS_oasis_opensciencegrid_org \
 =?= TRUE)
queue 100

Submit Script:
 file: R-wrapper.sh

#!/bin/bash
source /cvmfs/oasis.open \
 sciencegrid.org/osg/modules/ \
 lmod/5.6.2/init/bash
module load R
Rscript $1

Wrapper Script: sets up the environment,
loads R module, and invokes R script.

source /cvmfs/oasis.opensciencegrid.org/osg/modules/lmod/5.6.2/init/bash

requirements = (HAS_CVMFS_oasis_opensciencegrid_org =?= TRUE)

Distributed Environment Modules

29

file: R.submit
universe = vanilla

Executable = R-wrapper.sh
arguments = mcpi.R
transfer_input_files = mcpi.R

output = job.out.$(Process)
error = job.error.$(Process)
log = job.log.$(Process)

requirements = \
(HAS_CVMFS_oasis_opensciencegrid_org \
 =?= TRUE)
queue 100

Submit Script:
 file: R-wrapper.sh

#!/bin/bash
source /cvmfs/oasis.open \
 sciencegrid.org/osg/modules/ \
 lmod/5.6.2/init/bash
module load R
Rscript $1

Wrapper Script: sets up the environment,
loads R module, and invokes R script.

Prepares environment
for running R

Equivalent to: ‘R --slave’
(accepts R script as argument)

Distributed Environment Modules

30

file: R.submit
universe = vanilla

Executable = R-wrapper.sh
arguments = mcpi.R
transfer_input_files = mcpi.R

output = job.out.$(Process)
error = job.error.$(Process)
log = job.log.$(Process)

requirements = \
(HAS_CVMFS_oasis_opensciencegrid_org \
 =?= TRUE)
queue 100

Submit Script:

 mcpi.R is not the executable for this Condor job (the wrapper script
is the executable). So mcpi.R must be specified on the
‘transfer_input_files’ line, along with any other input files.

file: mcpi.R
montecarloPi <- function(trials) {
 count = 0
 for(i in 1:trials) {
 if((runif(1,0,1)^2 + \
 runif(1,0,1)^2)<1) {
 count = count + 1
 }
 }
 return((count*4)/trials)
}

montecarloPi(1000)

R Script: performs the actual analysis

Exercise: Submit a Batch of R Jobs

31

$ ssh <username>@login.osgconnect.net
$ tutorial R
$ cd ~/tutorial-R
$ nano mcpi.R
$ nano R-wrapper.sh
$ nano R.submit
$./R-wrapper.sh mcpi.R
$ condor_submit R.submit
$ condor_q <username>
$ watch -n2 condor_q <username> #Ctrl-c to exit
$ condor_history <cluster>
$ condor_history -long <cluster>
$ grep "\[1\]" job.out.* | awk '{sum += $2} END { print "Average =", sum/NR}'

Exercise: Troubleshooting Job Failure

32

file: error101_job.submit
Universe = vanilla

Executable = error101.sh
Arguments = 3600 # to sleep an hour

Requirements = (Memory >= 51200)

Error = job.err
Output = job.out
Log = job.log
Queue 1

Submit Script:

file: error101.sh automatically transferred to execute node
#!/bin/bash
error101.sh: a short discovery job

printf "Start time: "; /bin/date
printf "Job is running on node: "; /bin/hostname
printf "Job running as user: "; /usr/bin/id
printf "Job is running in directory: "; /bin/pwd

echo
echo " Working hard... "
sleep ${1-15}
echo " Science complete! "

Exercise: Troubleshooting Job Failure

33

file: error101_job.submit
Universe = vanilla

Executable = error101.sh
Arguments = 3600 # to sleep an hour

Requirements = (Memory >= 51200)

Error = job.err
Output = job.out
Log = job.log
Queue 1

Submit Script:

file: error101.sh automatically transferred to execute node
#!/bin/bash
error101.sh: a short discovery job

printf "Start time: "; /bin/date
printf "Job is running on node: "; /bin/hostname
printf "Job running as user: "; /usr/bin/id
printf "Job is running in directory: "; /bin/pwd

echo
echo " Working hard... "
sleep ${1-15}
echo " Science complete! "

Note the additional
requirement for 51200 MB
of memory!

Exercise: Troubleshooting Job Failure

34

$ ssh username@login.osgconnect.net
$ tutorial error101
$ nano error101_job.submit
$ nano error101.sh
$ condor_submit error101_job.submit
$ condor_q <username>
$ condor_q -analyze <jobID>
$ condor_q -better-analyze <jobID>

$ condor_qedit <jobID> Requirements ‘Memory >= 512’

OR

$ condor_rm <jobID> # Cancel the job
$ nano error101_job.submit # Edit the submit file
$ condor_submit error101_job.submit # Re-submit job

mailto:username@login.osgconnect.net

Troubleshooting Job Failure

35

Condor Commands for Troubleshooting
condor_q -analyze <jobID> # Print detailed information about job

status

condor_q -better-analyze <jobID> # Print (longer) detailed information about
job status

condor_qedit <jobID> \
 <attribute_name> <attribute_value>

Edit attributes of job in idle state

condor_release <jobID> # Release job from ‘held’ state

condor_ssh_to_job <jobID> # ssh to the node where specified job is
running (useful for debugging)

 Also, don’t forget to check the job log and error files!!

Handling Data - Stash

36

Stash
• Distributed filesystem for staging data for OSG Connect jobs

• Temporary storage of job I/O files

• Accessible on OSG Connect login node
 Your stash directory is: ~/data
 Can use scp/sftp to transfer to and from stash:
 scp input_data.tar.gz username@login.osgconnect.net:~/data/.
 scp username@login.osgconnect.net:~/data/outputdata.tar.gz ./

• Accessible through Globus Connect (or the OSG Connect Web Portal: https://portal.osgconnect.net)

• Publically available on the web
 Data located in ~/data/public can be accessed online at:
 http://stash.osgconnect.net/+username

Access stash from a compute node:
 wget http://stash.osgconnect.net/+username/input.dat

mailto:username@login.osgconnect.net:~/data/
mailto:username@login.osgconnect.net:~/data/outputdata.tar.gz
https://portal.osgconnect.net

Handling Data - Stash

37

1) Login at
http://portal.osgconnect.net

2) Select:
Transfer -> Start Transfer

3) Enter endpoint names and
navigate to your file(s)

The stash endpoint is
“osgconnect#stash”

4) “Get Globus Connect Personal”
to use your own computer as an
endpoint.

Accessing Stash through Globus

http://portal.osgconnect.net

Handling Data - Stash

38

file: namd_stash_run.submit
Universe = vanilla
Executable = namd_stash_run.sh

transfer_input_files = ubq_gbis_eq.conf, ubq.pdb, ubq.psf
should_transfer_files=Yes
Transfer_Output_Files = namdoutput_using_stash.dat
when_to_transfer_output = ON_EXIT
output = job.out
error = job.error
log = job.log
requirements = (HAS_CVMFS_oasis_opensciencegrid_org =?= TRUE)
Queue 1

Submit Script:

Handling Data - Stash

39

file: namd_stash_run.submit
Universe = vanilla
Executable = namd_stash_run.sh

transfer_input_files = ubq_gbis_eq.conf, ubq.pdb, ubq.psf
should_transfer_files=Yes
Transfer_Output_Files = namdoutput_using_stash.dat
when_to_transfer_output = ON_EXIT
output = job.out
error = job.error
log = job.log
requirements = (HAS_CVMFS_oasis_opensciencegrid_org =?= TRUE)
Queue 1

Submit Script:

List of input files
to transfer

Specify:
• whether to transfer

output files
• name of output file(s)
• when to transfer

Handling Data - Stash

40

file: namd_stash_run.submit
Universe = vanilla
Executable = namd_stash_run.sh

transfer_input_files = ubq_gbis_eq.conf, ubq.pdb, ubq.psf
should_transfer_files=Yes
Transfer_Output_Files = namdoutput_using_stash.dat
when_to_transfer_output = ON_EXIT
output = job.out
error = job.error
log = job.log
requirements = (HAS_CVMFS_oasis_opensciencegrid_org =?= TRUE)
Queue 1

Submit Script:

Executable: Prepares environment, launches namd with specified config file
file: namd_stash_run.sh
#!/bin/bash
source /cvmfs/oasis.opensciencegrid.org/osg/modules/lmod/5.6.2/init/bash
module load namd/2.9
wget http://stash.osgconnect.net/+username/Namd_param/par_all27_prot_lipid.inp
namd2 ubq_gbis_eq.conf > namdoutput_using_stash.dat

Handling Data - Stash

41

file: namd_stash_run.submit
Universe = vanilla
Executable = namd_stash_run.sh

transfer_input_files = ubq_gbis_eq.conf, ubq.pdb, ubq.psf
should_transfer_files=Yes
Transfer_Output_Files = namdoutput_using_stash.dat
when_to_transfer_output = ON_EXIT
output = job.out
error = job.error
log = job.log
requirements = (HAS_CVMFS_oasis_opensciencegrid_org =?= TRUE)
Queue 1

Submit Script:

Executable: Prepares environment, launches namd with specified config file
file: namd_stash_run.sh
#!/bin/bash
source /cvmfs/oasis.opensciencegrid.org/osg/modules/lmod/5.6.2/init/bash
module load namd/2.9
wget http://stash.osgconnect.net/+username/Namd_param/par_all27_prot_lipid.inp
namd2 ubq_gbis_eq.conf > namdoutput_using_stash.dat

Download input
data from stash

Handling Data - Stash

42

file: namd_stash_run.submit
Universe = vanilla
Executable = namd_stash_run.sh

transfer_input_files = ubq_gbis_eq.conf, ubq.pdb, ubq.psf
should_transfer_files=Yes
Transfer_Output_Files = namdoutput_using_stash.dat
when_to_transfer_output = ON_EXIT
output = job.out
error = job.error
log = job.log
requirements = (HAS_CVMFS_oasis_opensciencegrid_org =?= TRUE)
Queue 1

Submit Script:

file: namd_stash_run.sh
#!/bin/bash
source /cvmfs/oasis.opensciencegrid.org/osg/modules/lmod/5.6.2/init/bash
module load namd/2.9
wget http://stash.osgconnect.net/+username/Namd_param/par_all27_prot_lipid.inp
namd2 ubq_gbis_eq.conf > namdoutput_using_stash.dat

Executable: Prepares environment, launches namd with specified config file

Redirect namd
output to a file.

Exercise: Access Stash from Job with http

43

$ ssh <username>@login.osgconnect.net
$ tutorial stash-namd
$ cd ~/tutorial-stash-namd
$ nano namd_stash_run.submit
$ nano namd_stash_run.sh # Edit “username”
$ cp par_all27_prot_lipid.inp ~/data/public/.
$./namd_stash_run.sh
$ condor_submit namd_stash_run.submit
$ condor_q <username>
$ watch -n2 condor_q <username> #Ctrl-c to exit
$ condor_q -analyze <jobID>

Job Workflows with DAG

44

DAGMan is recommended for all
production style workloads, even if
there is no structure to your jobs

– Good job retry mechanism (try jobs N
times, check success with post scripts,
..)

– Can throttle the number of submitted
jobs

– Provides a workload “checkpointing”
mechanism

…

Independent jobs

45

DAG file points to regular HTCondor job submit
files, and allows you to specify relationships

JOB A job_a.submit
RETRY A 3

JOB B job_b.submit
RETRY B 3

JOB C job_c.submit
RETRY C 3

PARENT A CHILD C
PARENT B CHILD C

B A

C

Job Workflows with DAG

46

B A C D

Today’s Exercise: Simple Linear DAG
• Each step depends on successful completion of previous step.
• For relatively short jobs, monitoring this without a DAG is tedious

and inefficient.

Job Workflows with DAG

file: linear.dag
######DAG file######
Job A0 namd_run_job0.submit
Job A1 namd_run_job1.submit
Job A2 namd_run_job2.submit
Job A3 namd_run_job3.submit
PARENT A0 CHILD A1
PARENT A1 CHILD A2
PARENT A2 CHILD A3

47

Job Workflows with DAG

A1 A0 A2 A3

DAG file:

file: linear.dag
######DAG file######
Job A0 namd_run_job0.submit
Job A1 namd_run_job1.submit
Job A2 namd_run_job2.submit
Job A3 namd_run_job3.submit
PARENT A0 CHILD A1
PARENT A1 CHILD A2
PARENT A2 CHILD A3

48

Job keyword, Job Name, Condor Job submission script

Job Workflows with DAG

A1 A0 A2 A3

DAG file:

file: linear.dag
######DAG file######
Job A0 namd_run_job0.submit
Job A1 namd_run_job1.submit
Job A2 namd_run_job2.submit
Job A3 namd_run_job3.submit
PARENT A0 CHILD A1
PARENT A1 CHILD A2
PARENT A2 CHILD A3

49

Job keyword, Job Name, Condor Job submission script

Job dependency description

Job Workflows with DAG

A1 A0 A2 A3

DAG file:

50

file: linear.dag
######DAG file######
Job A0 namd_run_job0.submit
Job A1 namd_run_job1.submit
Job A2 namd_run_job2.submit
Job A3 namd_run_job3.submit
PARENT A0 CHILD A1
PARENT A1 CHILD A2
PARENT A2 CHILD A3

DAG file:

Job dependency description

Job Workflows with DAG
Submit file:
 file: namd_run_job1.submit
Universe = vanilla
Executable = namd_run_job1.sh
transfer_input_files = ubq_gbis_eq_job1.conf, \
 ubq.pdb, ubq.psf, \
 par_all27_prot_lipid.inp, \
 OutFilesFromNAMD_job0.tar.gz
should_transfer_files=Yes
when_to_transfer_output = ON_EXIT
output = job.output.job1
error = job.error.job1
log = job.log.job1
requirements = \
(HAS_CVMFS_oasis_opensciencegrid_org =?= TRUE) Queue
1

A1 A0 A2 A3

file: namd_run_job1.submit
Universe = vanilla
Executable = namd_run_job1.sh
transfer_input_files = ubq_gbis_eq_job1.conf, \
 ubq.pdb, ubq.psf, \
 par_all27_prot_lipid.inp, \
 OutFilesFromNAMD_job0.tar.gz
should_transfer_files=Yes
when_to_transfer_output = ON_EXIT
output = job.output.job1
error = job.error.job1
log = job.log.job1
requirements = \
(HAS_CVMFS_oasis_opensciencegrid_org =?= TRUE) Queue
1

file: namd_run_job1.sh
#!/bin/bash
tar xzf OutFilesFromNAMD_job0.tar.gz
mv OutFilesFromNAMD_job0/*job0.restart* .
source /cvmfs/oasis.opensciencegrid.org/osg/modules/lmod/5.6.2/init/bash
module load namd/2.9
namd2 ubq_gbis_eq_job1.conf > ubq_gbis_eq_job1.log
mkdir OutFilesFromNAMD_job1
rm *job0*
cp * OutFilesFromNAMD_job1/.
tar czf OutFilesFromNAMD_job1.tar.gz OutFilesFromNAMD_job1

51

Job Workflows with DAG
file: linear.dag
######DAG file######
Job A0 namd_run_job0.submit
Job A1 namd_run_job1.submit
Job A2 namd_run_job2.submit
Job A3 namd_run_job3.submit
PARENT A0 CHILD A1
PARENT A1 CHILD A2
PARENT A2 CHILD A3

DAG file:

Submit file:

52

Exerscise: DAG NAMD Workflow

$ ssh <username>@login.osgconnect.net
$ tutorial dagman-namd
$ cd ~/tutorial-dagman-namd
$ nano namd_run_job1.submit
$ nano namd_run_job1.sh
$ condor_submit_dag linear.dag
$ watch -n2 condor_q <username> #Ctrl-c to exit

53

Exerscise: DAG NAMD Workflow

$ ssh <username>@login.osgconnect.net
$ tutorial dagman-namd
$ cd ~/tutorial-dagman-namd/X-DAG
$ condor_submit_dag xconfig

Bonus Exercise: X-DAG

Take a look at the dag file ‘xconfig’, and
see if you can draw a picture of the
dependency graph.

54

Exerscise: DAG NAMD Workflow

$ ssh <username>@login.osgconnect.net
$ tutorial dagman-namd
$ cd ~/tutorial-dagman-namd/X-DAG
$ condor_submit_dag xconfig

Bonus Exercise: X-DAG

Take a look at the dag file ‘xconfig’, and
see if you can draw a picture of the
dependency graph.

B0 A0

A1 B1

X

BOSCO – Stage Jobs Locally

55

https://confluence.grid.iu.edu/pages/viewpage.action?pageId=10944561

BOSCO – Stage Jobs Locally

56

Download BOSCO to your laptop or workstation: (download:
http://bosco.opensciencegrid.org/download/)

$ wget -O ./bosco_quickstart.tar.gz \
http://bosco.opensciencegrid.org/download-form/?package=1.2/bosco_quickstart.tar.gz

 OR
$ curl -O \
http://bosco.opensciencegrid.org/download-form/?package=1.2/bosco_quickstart.tar.gz

Untar the package and run the quickstart script:
$ tar xvzf ./bosco_quickstart.tar.gz
$./bosco_quickstart

Answer the questions:
• When prompted "Do you want to install Bosco? Select y/n and press [ENTER]:" press "y" and ENTER.
• When prompted "Type the cluster name and press [ENTER]:" type login.osgconnect.net and press ENTER.
• When prompted "Type your name at login.osgconnect.net (default YOUR_USER) and press [ENTER]:" enter

your user name on OSG-Connect and press ENTER.
• When prompted "Type the queue manager for login.osgconnect.net (pbs, condor, lsf, sge, slurm) and press

[ENTER]:" enter condor and press ENTER.

Remove the installer and its log file:

$ rm bosco_quickstart*

http://bosco.opensciencegrid.org/download/
http://bosco.opensciencegrid.org/download-form/?package=1.2/bosco_quickstart.tar.gz
http://bosco.opensciencegrid.org/download-form/?package=1.2/bosco_quickstart.tar.gz
http://bosco.opensciencegrid.org/download-form/?package=1.2/bosco_quickstart.tar.gz
http://bosco.opensciencegrid.org/download-form/?package=1.2/bosco_quickstart.tar.gz
http://bosco.opensciencegrid.org/download-form/?package=1.2/bosco_quickstart.tar.gz
http://bosco.opensciencegrid.org/download-form/?package=1.2/bosco_quickstart.tar.gz
http://bosco.opensciencegrid.org/download-form/?package=1.2/bosco_quickstart.tar.gz
http://bosco.opensciencegrid.org/download-form/?package=1.2/bosco_quickstart.tar.gz
http://bosco.opensciencegrid.org/download-form/?package=1.2/bosco_quickstart.tar.gz

Exercise: Submit Job from Laptop Using
BOSCO

57

Each time you want to run BOSCO, first set up the environment, then start BOSCO:

$ source ~/bosco/bosco_setenv
$ bosco_start

Copy the quickstart tutorial from the osgconnect login node to your computer:

$ scp -r <username>@login.osgconnect.net:~/tutorial-quickstart ./
$ cd tutorial-quickstart

Edit the submit script: Change ‘vanilla’ to ‘grid’

Submit the job:

$ condor_submit tutorial03.submit

Check the status of your job:

$ condor_q

 Note that condor_q lists only your jobs even without

specifying the user id. There may be other jobs
queued on OSG Connect but to see them you'll have
to login on login.osgconnect.net and issue condor_q
there.

	Getting Started with OSG Connect�~ an Interactive Tutorial ~�
	Topics
	Properties of DHTC Jobs
	Properties of DHTC Jobs
	Getting Started with OSG Connect
	Projects in OSG Connect
	Projects in OSG Connect
	Projects in OSG Connect
	Slide Number 9
	Intro to HTCondor
	Intro to HTCondor
	Intro to HTCondor
	Intro to HTCondor
	Intro to HTCondor
	Intro to HTCondor
	Intro to HTCondor
	Intro to HTCondor
	Intro to HTCondor
	Intro to HTCondor
	Exercise: Submit a Simple Job
	Intro to HTCondor
	Distributed Environment Modules
	Distributed Environment Modules
	Distributed Environment Modules
	Distributed Environment Modules
	Distributed Environment Modules
	Distributed Environment Modules
	Distributed Environment Modules
	Distributed Environment Modules
	Distributed Environment Modules
	Exercise: Submit a Batch of R Jobs
	Exercise: Troubleshooting Job Failure
	Exercise: Troubleshooting Job Failure
	Exercise: Troubleshooting Job Failure
	Troubleshooting Job Failure
	Handling Data - Stash
	Handling Data - Stash
	Handling Data - Stash
	Handling Data - Stash
	Handling Data - Stash
	Handling Data - Stash
	Handling Data - Stash
	Exercise: Access Stash from Job with http
	Job Workflows with DAG
	Job Workflows with DAG
	Job Workflows with DAG
	Job Workflows with DAG
	Job Workflows with DAG
	Job Workflows with DAG
	Job Workflows with DAG
	Job Workflows with DAG
	Exerscise: DAG NAMD Workflow
	Exerscise: DAG NAMD Workflow
	Exerscise: DAG NAMD Workflow
	BOSCO – Stage Jobs Locally
	BOSCO – Stage Jobs Locally
	Exercise: Submit Job from Laptop Using BOSCO

