
Introduction to Containers

Martin Čuma
Center for High Performance Computing

University of Utah
m.cuma@utah.edu

11-Apr-24 http://www.chpc.utah.edu Slide 2

Overview

• Why do we want to use containers?
• Containers basics
• Run a pre-made container
• Build and deploy a container
• Containers for complex software

11-Apr-24 http://www.chpc.utah.edu Slide 3

Hands on setup

1. Download the talk slides
http://home.chpc.utah.edu/~mcuma/chpc/Containers24s.pdf

2. Using FastX or Putty, ssh to any CHPC Linux machine, e.g.
$ ssh uxxxxxx@frisco.chpc.utah.edu

3. Load the Apptainer module
$ module load apptainer

http://home.chpc.utah.edu/%7Emcuma/chpc/Containers24s.pdf

11-Apr-24 http://www.chpc.utah.edu Slide 4

Why to use
containers?

Software dependencies

• Some programs require complex software environments
– OS type and versions
– Drivers
– Compiler type and versions
– Software dependencies

• glibc, stdlibc++ versions
• Other libraries and executables
• Python/R/MATLAB versions
• Python/R libraries

11-Apr-24 http://www.chpc.utah.edu Slide 5

Reproducible research

• Research outputs include software and data
• Software reproducibility

– Software repositories (svn, git)
– Good but often software has dependencies

• Data reproducibility
– Data as publication supplementary info, centralized repositories

(NCBI), …
– Disconnected from the production environment

• Package data AND code AND compute environment in one file
11-Apr-24 http://www.chpc.utah.edu Slide 6

Scalable research

• Develop a program / pipeline locally, run globally
• Scale to parallel resources

– Run many times
– Use local or national HPC resources

• Automate the process
– Container/software building and deployment
– Parallel pipeline

11-Apr-24 http://www.chpc.utah.edu Slide 7

Additional bonus

• Old applications built on old Linux versions can run on
newer Linux host, and vice versa

• May be able to run Windows programs on Linux

11-Apr-24 http://www.chpc.utah.edu Slide 8

11-Apr-24 http://www.chpc.utah.edu Slide 9

Container basics

11-Apr-24 http://www.chpc.utah.edu Slide 10

Virtualization basics

• Hardware virtualization
– Running multiple OSes on the same

hardware
– VMWare, VirtualBox

• OS level virtualization
– run isolated OS instance (guest)

under a server OS (host)
– Also called containers; user defined

software stack (UDSS)
– Docker, Singularity, Apptainer

11-Apr-24 http://www.chpc.utah.edu Slide 11

Containers

• Isolate computing environments
– And allow for regenerating computing environments

• Guest OS running over host OS
– Guest’s OS can be different that host’s
– Low level operations (kernel, network, I/O) run

through the host
• From user standpoint guest OS behaves like

standard OS

11-Apr-24 http://www.chpc.utah.edu Slide 12

Container solutions

• Docker
– Well established
– Has docker hub for container sharing
– Problematic with HPC

• Singularity, Apptainer
– Designed for HPC, user friendly
– Support for MPI, GPUs

• Charliecloud; Shifter, udocker
– Also HPC designed, more Docker compatibility
– Simple, but less practical

11-Apr-24 http://www.chpc.utah.edu Slide 13

Container solutions - contd.

• OS vendor tools
– RedHat Podman, Buildah, Skopeo - new with RHEL 8

• Other Linux based container solutions
– runC, LXC

• Orchestration tools
– use containers to spin up groups of servers
– Kubernetes, Docker Compose

Singularity containers

• Integrate with traditional HPC
– Same user inside and outside of the container
– Same file systems (home, scratch), environment
– Can integrate with existing software (CHPC sys branch)

• Portable and sharable
– A container is a file
– It can be built on one OS and run on another

• Only Linux support right now
• Possible security issues due to the use of setUID executables

– Hacker can exploit potential flaws in setUID programs to gain root
– https://sylabs.io/guides/3.8/user-guide/security.html

11-Apr-24 http://www.chpc.utah.edu Slide 14

https://sylabs.io/guides/3.8/user-guide/security.html

An aside into security

• Containers need privilege escalation to run
– Give sudo
– Run root owned daemon process (Docker)
– Use setUID programs (programs which parts can run in privileged mode)

(Singularity now, udocker)
– User namespaces – new Linux kernel feature to further isolate users

(Apptainer, Charliecloud, limited Singularity, Docker)
– Linux capability set – fine grained privilege isolation (Singularity future?)

• In HPC environment
– setUID if you have some trust in your users, user namepaces if you don’t

(and have newer Linux distribution – e.g. CentOS >= 7.4)

11-Apr-24 http://www.chpc.utah.edu Slide 15

Singularity and Apptainer

• Singularity
– Originally developed at LLNL
– Spun out into a venture capital funded company to allow for growth
– Remained open source but company interests diverged
– Company (Sylabs) runs the Sylabs Cloud

• Apptainer
– Forked from open source Singularity, but diverged since
– Funded by the Linux Foundation
– Rootless container build
– Our future choice for now due to staying open source and active

development

11-Apr-24 http://www.chpc.utah.edu Slide 16

Charliecloud containers

• Uses user namespaces for isolation
– More secure, rootless
– Requires newer Linux OSes (works well on Rocky Linux 8)

• Better Docker compatibility
– Uses Dockerfiles for build
– Uses the same layers as Docker
– Good option for building a container when one has a Dockerfile
– See instructions at

https://www.chpc.utah.edu/documentation/software/charliecloud.php

11-Apr-24 http://www.chpc.utah.edu Slide 17

https://www.chpc.utah.edu/documentation/software/charliecloud.php

Singularity workflow

11-Apr-24 http://www.chpc.utah.edu Slide 19

Remote build on Sylabs Cloud

--remote container.sif Singularity

apptainer build container.sif Singularity

apptainer build container.sif docker://ubunu

apptainer build --sandbox tmpdir Singularity

11-Apr-24 http://www.chpc.utah.edu Slide 20

Run a pre-made container

A few pre-requisites

• Building a container often requires a root, or sudo
– You can do that on your own machine
– You can do that in the cloud (e.g. Sylabs Cloud, Docker Hub).

• Some container runtimes are rootless
– You can build at CHPC clusters with Apptainer or Charliecloud

• You can run a container as an user
– You can run your own containers at CHPC
– You can run CHPC provided containers at CHPC
– You can run containers obtained on the internet at CHPC

11-Apr-24 http://www.chpc.utah.edu Slide 21

Basic principles

• Containers are run in user space (no root required)
• An appropriate environment module has to be loaded

– Apptainer, Singularity, Charliecloud
• User inside of the container

– Current user
– If specified, other user, including root
– Root inside container is contained = can’t be root outside

• Some containers can be modified by non-root user
– Apptainer, Charliecloud

11-Apr-24 http://www.chpc.utah.edu Slide 22

Container registries and
repositories

• Most containers reside in registries
– Content delivery and storage systems for container images

• Docker Hub is the most common registry
– https://hub.docker.com
– Contains many channels, e.g. Biocontainers

(http://biocontainers.pro/)
• There are a few other registries
• Sylabs (Singularity) also has a hub (library)

– Not that much used

11-Apr-24 http://www.chpc.utah.edu Slide 23

https://hub.docker.com/
http://biocontainers.pro/

How to find a container

• Google or hub.docker.com
search
– E.g. “blast docker”

• Use singularity (Sylabs
library) search

$ singularity search lammps
Found 4 containers for 'lammps'

 library://lammps/default/la
mmps_development

 Tags: centos7
centos8 fedora30_mingw
fedora32_mingw ubuntu16.04
ubuntu18.04 ubuntu18.04_amd_rocm
ubuntu18.04_amd_rocm_cuda
ubuntu18.04_intel_opencl
ubuntu18.04_nvidia ubuntu20.04

11-Apr-24 http://www.chpc.utah.edu Slide 24

Run vs. pull vs. build

• pull will download the container and create sif file
• build does the same but names sif file and has more options
• run/exec will download if needed and run
$ apptainer pull docker://ubuntu:latest

- Singularity pulls the Docker layers to ~/.singularity, but puts sif file to local directory
$ apptainer build my_ubuntu.sif docker://ubuntu:latest

$ ls
my_ubuntu.sif ubuntu_latest.sif

$ apptainer exec ubuntu_latest.sif /bin/bash

$ apptainer shell ubuntu_latest.sif

With Singularity use the singularity command.
11-Apr-24 http://www.chpc.utah.edu Slide 25

Files in and out of the
container

• Let’s create a Python script
echo 'print("hello world from the outside")' > myscript.py

• Now run this script using the system’s Python
python ./myscript.py

• Now run the script in the DockerHub python container
apptainer exec docker://python python ./myscript.py

…Conclusion: Scripts and data can be kept inside or outside the container. In some
instances (e.g., large datasets or scripts that will change frequently) it is easier to
containerize the software and keep everything else outside.

11-Apr-24 http://www.chpc.utah.edu Slide 26

Some useful tips

• Binding mount points
$ export APPTAINER_BINDPATH="/tmp"

$ apptainer shell -B /scratch/local/$USER:/tmp ubuntu_python.img

• Specifying shell
$ export APPTAINER_SHELL=/bin/bash

$ apptainer shell –s /bin/bash ubuntu_python.img

• More specialized topics – ask us
– Using environment modules from the host
– Using GPUs, MPI over InfiniBand

11-Apr-24 http://www.chpc.utah.edu Slide 27

Using GPUs

• Need to bring in the Nvidia driver stack
– --nv runtime flag brings the drivers from the host

• Still need to have a compatible CUDA installed in the container (older than or
the same as the driver)

• On a GPU node, can e.g. execute:
apptainer exec --nv docker://tensorflow/tensorflow:latest-gpu python -c
"import tensorflow as tf; tf.config.list_physical_devices()"

11-Apr-24 http://www.chpc.utah.edu Slide 28

Using MPI and InfiniBand

• Need to bring the IB stack in the container
– Some people bring the needed IB libraries from the host
– For Ubuntu we prefer to install the Ubuntu stack
– https://github.com/CHPC-UofU/Singularity-ubuntu-mpi

• MPI
– Build inside the container with IB, or use CHPC’s modules
– Prefer MPICH and derivatives, OpenMPI is very picky with versions
– If using OS stock MPI, then make sure to LD_PRELOAD or

LD_LIBRARY_PATH ABI compatible libmpi.so with InfiniBand
– https://github.com/CHPC-UofU/Singularity-meep-mpi

11-Apr-24 http://www.chpc.utah.edu Slide 29

https://github.com/CHPC-UofU/Singularity-ubuntu-mpi
https://github.com/CHPC-UofU/Singularity-ubuntu-python/blob/master/Singularity

Using Lmod from containers

• Many Linux programs are binary compatible between distros
– Most installed binaries are (Intel, NVHPC tools, DDT, …)

• No need to install these in the container – use our NFS
mounted software stack through Lmod
– Need to have separate Lmod installation for Ubuntu due to some files

having different location
• In the container

– Install Lmod dependencies
– Modify /etc/bash.bashrc to source our Lmod

https://github.com/CHPC-UofU/Singularity-ubuntu-python/blob/master/Singularity
11-Apr-24 http://www.chpc.utah.edu Slide 30

https://github.com/CHPC-UofU/Singularity-ubuntu-python/blob/master/Singularity

Useful container repositories

• General HPC
– Nvidia Containers - https://catalog.ngc.nvidia.com/containers
– E4S – Extreme-scale Scientific Software Stack – https://e4s.io

• 50 programs, incl. GPU, multiple Linux Distros
– Many other projects

• Interpreted languages
– R - Rocker - https://www.rocker-project.org/
– Python – official DockerHub - https://hub.docker.com/_/python

11-Apr-24 http://www.chpc.utah.edu Slide 31

https://catalog.ngc.nvidia.com/containers
https://e4s.io/
https://www.rocker-project.org/
https://hub.docker.com/_/python

Hands on – container
commands in a module

• Follow our documentation:
– https://www.chpc.utah.edu/documentation/software/singularity.php#exd

• Pull container
– NGC’s LAMMPS: https://catalog.ngc.nvidia.com/orgs/hpc/containers/lammps
$ mkdir ~/containers; cd containers; ml apptainer

$ apptainer pull lammps.sif docker://nvcr.io/hpc/lammps:29Sep2021

• Explore the container to find the program files
$ apptainer shell lammps.sif

$ which lmp

11-Apr-24 http://www.chpc.utah.edu Slide 32

https://www.chpc.utah.edu/documentation/software/singularity.php#exd
https://catalog.ngc.nvidia.com/orgs/hpc/containers/lammps

Hands on – container
commands in a module

• Get a module file:
$ mkdir $HOME/MyModules/lammps

$ cd $HOME/MyModules/lammps

$ cp /uufs/chpc.utah.edu/sys/modulefiles/templates/container-template.lua
29Sep2021.lua

Modify the module file
-- path to the container sif file

local CONTAINER="/uufs/chpc.utah.edu/common/home/u0101881/containers/lammps.sif"

-- text array of commands to alias from the container

local COMMANDS =
{"/usr/local/lammps/sm70/bin/lmp","/usr/local/lammps/sm70/bin/hpcbind"}

-- set to true if the container requires GPU(s)

local GPU = true

11-Apr-24 http://www.chpc.utah.edu Slide 33

Hands on – container
commands in a module

• Use module file:
$ module use $HOME/MyModules

$ module load lammps/29Sep2021

$ which lmp

$ mkdir -p $HOME/lammps/data; cd $HOME/lammps/data

$ wget https://lammps.org/inputs/in.lj.txt

$ lmp -in in.lj.txt

(to run on GPU)

$ lmp -k on g 1 -sf kk -pk kokkos cuda/aware on neigh full comm device
binsize 2.8 -var x 8 -var y 8 -var z 8 -in in.lj.txt

11-Apr-24 http://www.chpc.utah.edu Slide 34

https://lammps.org/inputs/in.lj.txt

11-Apr-24 http://www.chpc.utah.edu Slide 35

Building Singularity
containers

11-Apr-24 http://www.chpc.utah.edu Slide 36

Recall: container execution

• On any system with Apptainer/Singularity, even without administrative privilege,
you can retrieve and use containers:

• Download a container from Docker Hub
apptainer pull docker://some_image
apptainer build mycont.sif docker://some_image

• Run a container
apptainer run mycont.sif

• Execute a specific program within a container
apptainer exec mycont.sif python myscript.py

• “Shell” into a container to use or look around
apptainer shell mycont.sif

• Inspect an image
apptainer inspect --runscript mycont.sif

When to build own
containers

• Complex software dependencies
– Especially Python and R packages

• bioBakery – intricate dependencies of Python and R which did not build on
CentOS

• SEQLinkage – instructions to build on Ubuntu using its packages

• Quick deployment
– Some Linux distros provide program packages while others don’t

• paraview-python on Ubuntu via apt-get

• Deploying your own code or pipeline
• Modify or add onto an existing container

11-Apr-24 http://www.chpc.utah.edu Slide 37

Container build strategy

• Start with a the basic container (e.g. ubuntu:latest from Docker)
• Shell into the container

– Install additional needed programs
• If they have dependencies, install the dependencies – google for the OS

provided packages first and install with apt-get/yum if possible
– Put the commands in the %post scriptlet

• Build the container again
– Now with the additional commands in the %post
– If something fails, fix it, build container again

• Iterate until all needed programs are installed
11-Apr-24 http://www.chpc.utah.edu Slide 38

Two ways of building
containers

• Build a container on a system on which you have administrative
privilege (e.g., your laptop, singularity.chpc.utah.edu).
– Pros: You can interactively develop the container.
– Cons: Requires many GB of disk space, requires administrative privilege, must

keep software up-to-date, container transfer speeds can be slow depending on
personal network connection.

• Build a container on Sylabs Cloud
– Pros: Essentially zero disk space required on your system, doesn’t require

administrative privilege, no software upgrades needed, easy to retrieve from
anywhere, typically faster transfers from Sylabs Cloud to desired endpoint,
interactive container development works.

– Cons: Need to set up access to Sylabs Cloud, slower interactivity in the container
development.

11-Apr-24 http://www.chpc.utah.edu Slide 39

Two ways of building
containers

• Build a container on a system on which you have administrative
privilege (e.g., your laptop, singularity.chpc.utah.edu).
– Pros: You can interactively develop the container.
– Cons: Requires many GB of disk space, requires administrative privilege, must

keep software up-to-date, container transfer speeds can be slow depending on
personal network connection.

• Build a container on Sylabs Cloud
– Pros: Essentially zero disk space required on your system, doesn’t require

administrative privilege, no software upgrades needed, easy to retrieve from
anywhere, typically faster transfers from Sylabs Cloud to desired endpoint,
interactive container development works.

– Cons: Need to set up access to Sylabs Cloud, slower interactivity in the container
development.

11-Apr-24 http://www.chpc.utah.edu Slide 40

Latest versions of Apptainer allow rootless container build

Container build process

• Create a writeable container
$ apptainer build --sandbox mycont ubuntu22.def

– This creates a container directory called mycont

• If additional installation is needed after the build
– Shell into the container and do the install manually

$ apptainer shell -w -s /bin/bash mycont

– Execute what’s needed, modify container definition file, repeat
• When done, create a production container
$ apptainer build ubuntu22.sif ubuntu22.def

11-Apr-24 http://www.chpc.utah.edu Slide 41

Container definition file
(a.k.a. recipe)

• Defines how the container is bootstrapped
– Header – defines the core OS to bootstrap
– Sections – scriptlets that perform additional tasks

• Header
– Docker based (faster installation)

BootStrap: docker

From: ubuntu:latest

– Linux distro based
BootStrap: debootstrap

OSVersion: xenial

MirrorURL: http://us.archive.ubuntu.com/ubuntu/
11-Apr-24 http://www.chpc.utah.edu Slide 42

Definition file sections

• %setup Runs on the host
– Install host based files (e.g. GPU drivers)

• %post Runs in the container
– Install additional packages, configure, etc

• %runscript Defines what happens when container is run
– Execution commands

• %test Runs tests after the container is built
– Basic testing

11-Apr-24 http://www.chpc.utah.edu Slide 43

Definition file sections cont’d

• %environment Definition of environment variables
• %files Files to copy into the container
• %labels Container metadata
• %help What displays during apptainer help command

• More details at
https://apptainer.org/docs/user/main/definition_files.html

11-Apr-24 http://www.chpc.utah.edu Slide 44

https://apptainer.org/docs/user/main/definition_files.html

Building a container CHPC
interactive node

1. Log in to Frisco: ssh uxxxxxx@frisco1.chpc.utah.edu
2. Create a recipe file for your container, name it “Singularity”, e.g.

$ nano Singularity
Bootstrap: docker
From: alpine:3.9
%post
apk update; apk upgrade; apk add bash

To exit and save type [ctrl-x], then “y”, then [enter].

3. Initialize Apptainer and build container
$ ml apptainer
$ apptainer build alpine.sif Singularity

4. Verify that the container is available by opening shell in it
$ apptainer shell alpine.sif

11-Apr-24 http://www.chpc.utah.edu Slide 45

11-Apr-24 http://www.chpc.utah.edu Slide 46

Troubleshooting and
Caveats

Host/container environment
conflicts

• Container problems are often linked with how the container “sees” the
host system. Common issues:
– The container doesn’t have a bind point to a directory you need to read from / write to
– The container will “see” python libraries installed in your home directory (and the

same is true for R and other packages). If this happens, set the PYTHONPATH
environment variable in your job script so that it points to the container paths first.
export PYTHONPATH=<path-to-container-libs>:$PYTHONPATH

– or use the --cleanenv option

• To diagnose the issues noted above, as well as others, “shelling in” to
the container is a great way to see what’s going on inside.
• Also, look in the singularity.conf file for system settings (can’t modify).

11-Apr-24 http://www.chpc.utah.edu Slide 47

Pull and build errors

• Sometimes build fails due to corrupted locally cached image layer files.
Use apptainer cache list followed by apptainer cache clean to clean
up the old layers.

• When building ubuntu containers, failures during %post stage of
container builds from a recipe file can often be remedied by starting the
%post section with the command “apt-get update”. As a best practice,
make sure you insert this line at the beginning of the %post section in all
recipe files for ubuntu containers.

11-Apr-24 http://www.chpc.utah.edu Slide 48

Overlays

• Overlays are additional images that are ”laid” on top of existing images,
enabling the user to modify a container environment without modifying the
actual container. Useful because:
– Overlay images enable users to modify a container environment even if they don’t

have root access (though changes disappear after session)
– Root users can permanently modify overlay images without modifying the underlying

image.
– Overlays are a likely way to customize images for different HPC environments

without changing the underlying images.
– More on overlays:

https://www.sylabs.io/guides/3.6/user-guide/persistent_overlays.html

11-Apr-24 http://www.chpc.utah.edu Slide 49

https://www.sylabs.io/guides/3.6/user-guide/persistent_overlays.html

Moving containers

• You’ve built your container on your laptop. It is 3 Gigabytes. Now you
want to move it to CHPC to take advantage of the HPC resources. What’s
the best way?
• Containers are files, so you can transfer them to CHPC just as you would
a file:
– Command line utilities (scp, sftp)
– Globus or rclone (recommended)

https://www.chpc.utah.edu/documentation/software/rclone.php
https://www.chpc.utah.edu/documentation/software/globus.php

– For more on data transfers to/from CHPC:
https://www.chpc.utah.edu/documentation/data_services.php

11-Apr-24 http://www.chpc.utah.edu Slide 50

https://www.chpc.utah.edu/documentation/software/rclone.php
https://www.chpc.utah.edu/documentation/software/globus.php
https://www.chpc.utah.edu/documentation/data_services.php

Resources

• http://sylabs.io
• http://cloud.sylabs.io
• https://apptainer.org/
• https://hpc.github.io/charliecloud/
• https://www.chpc.utah.edu/documentation/software/container

s.php
• https://github.com/CHPC-UofU

11-Apr-24 http://www.chpc.utah.edu Slide 51

http://sylabs.io/
http://cloud.sylabs.io/
https://apptainer.org/
https://hpc.github.io/charliecloud/
https://www.chpc.utah.edu/documentation/software/containers.php
https://www.chpc.utah.edu/documentation/software/containers.php
https://github.com/CHPC-UofU

11-Apr-24 http://www.chpc.utah.edu Slide 52

Questions?

	Introduction to Containers
	Overview
	Hands on setup
	Why to use containers?
	Software dependencies
	Reproducible research
	Scalable research
	Additional bonus
	Container basics
	Virtualization basics
	Containers
	Container solutions
	Container solutions - contd.
	Singularity containers
	An aside into security
	Singularity and Apptainer
	Charliecloud containers
	Singularity workflow
	Run a pre-made container
	A few pre-requisites
	Basic principles
	Container registries and repositories
	How to find a container
	Run vs. pull vs. build
	Files in and out of the container
	Some useful tips
	Using GPUs
	Using MPI and InfiniBand
	Using Lmod from containers
	Useful container repositories
	Hands on – container commands in a module
	Hands on – container commands in a module
	Hands on – container commands in a module
	Building Singularity containers
	Recall: container execution
	When to build own containers
	Container build strategy
	Two ways of building containers
	Two ways of building containers
	Container build process
	Container definition file (a.k.a. recipe)
	Definition file sections
	Definition file sections cont’d
	Building a container CHPC interactive node
	Troubleshooting and Caveats
	Host/container environment conflicts
	Pull and build errors
	Overlays
	Moving containers
	Resources
	Questions?

