
Introduction to Linux – Part 2

Anita Orendt and Martin Cuma

Center for High Performance Computing

Editors

There are many choices – a few are:

nano

 vi

 emacs

Nano Editor

To start either

nano

OR

nano filename

-- if filename exists, it will open file in editor; if it does not, this will be the name
used when you save the file.

-- if you start nano without a filename it will prompt you for a name when you
“WriteOut” using ^O (Cntrl O)

Vi editor
 Another common choice
Start with the command vi or vi filename
 vi at CHPC is actually vim, which is an improved version of vi
 More feature rich, takes more time to learn

 Not going into detail but we do provide a vi cheat sheet and a vi
graphical cheat sheet – linked on the presentation page
https://www.chpc.utah.edu/presentations/IntroLinux3parts.php

 There is also a tutor program – start with command vimtutor
which is a great tool to learn to use the program

https://www.chpc.utah.edu/presentations/IntroLinux3parts.php

Loops

Used when you want to preform the same action many times,
such as on multiple files

There are a number of ways you can do this

One option
List multiple arguments for a command to act upon
Example (go to the LinuxClass/shell-lesson-
data/exercise-data/creatures directory):
head –n 3 basilisk.dat minotaur.dat unicorn.dat

Another option – do a loop with a for/do statement

Loops
 in bash syntax a loop looks like:

Can do on a single line, separating by ‘;’
for filename in basilisk.dat minotaur.dat unicorn.dat; do head -n 3

$filename; done

Note when you do the loop in a multi line format, there is a shell prompt
“>” that is used to ask for the rest of the command

 Can use wildcards – try using a * instead of listing each file separately

Loop Terminology

 in bash syntax a loop looks like:

In this loop thing – is a variable. During execution $thing is set to the first item in the
list, the operation(s) is done, then it goes to the second and repeats the operation(s),
etc until it reaches the last item in the list. Then the loop is exited.

You can choose anything for thing – however, your choice of the what to use for thing
should help a person reading the file understand what the loop is doing and what it is
acting upon

Exercise

 in bash syntax a loop looks like:

Go to the directory shell-lesson-data/exercise-data/proteins
and write a loop that lists all of the pdb files

Write a loop that lists all of the files

Exercise

 in bash syntax a loop looks like:

Go to the directory shell-lesson-data/exercise-data/proteins
and write a loop that lists all of the pdb files

Write a loop that lists all of the files

Write a loop with multiple operations

Write a loop where the operation uses a pipe or redirect to a file

for $file in *.pdb

do

echo $file

cp $file orig-$file

cat $file >> all.pdb

done

Exercise – Nelle’s Data

 To process her data files Nelle will need to run an analysis on each of her
sample files in north-pacific-gyre. The files to be processed have the consistent
names of NENExxxxA.txt and NENExxxxB.txt

The analysis (a script – more on this next time – written by her supervisor is
called goostats.sh and requires two arguments – the input file name and the
output file name.

Nelle decides to call the output file stats-NENExxxA.txt – prepending the
filename with stats-

She is being careful so she wants to test (using echo instead of running the
script

 Hint – start with 1 file and run test to create the two arguments. You can
prepend a variable with additional information: stats-$variable

Exercise – Nelle’s Data Answer

To make sure getting all of the files
$ for datafile in NENE*A.txt NENE*B.txt
> do
> echo $datafile
> done

 Test getting the output file name
$ for datafile in NENE*A.txt NENE*B.txt
> do
> echo $datafile stats-$datafile
> done

 Executing the script across all files
$ for datafile in NENE*A.txt NENE*B.txt
> do
> echo $datafile
> bash goostats.sh $datafile stats-$datafile
> done

Some other useful commands

cut – e.g. cut -f 2 -d : file.txt

Prints selected parts of lines from file to standard output (screen)

du – e.g. du –hs

Reports file space usage; -s give summary of total usage, -h gives it in
“human readable” format of K, M, G

df – e.g. df –h

Reports file system disk space usage

ln – e.g. ln -s ~/bin/prog.exe prog1.exe

 create a link between files (-s symbolic)

On your own – Use and explore options of these commands

File Permissions
Shown with ls -l

User (u), group (g), other (o)
-rw-rw-r-- 1 u0028729 chpc 86 Jul 30 02:41 notes.txt

Can also use a for all to set u, g, and o to same settings
Permissions are read (r), write (w), execute or search for a directory (x)
chmod – to change permissions of file or directory, can set
Examples:
chmod g=rwx file
chmod g+x file
chmod o-rwx *.c

Executable files (programs and scripts) must have executable permissions; directories
must be executable in order to be able to cd into them
chmod +x *.sh

Login Scripts & Environmental Variables
In your home directory are a a number of dot files - .bashrc and
.custom.sh, .tcshrc and .custom.csh Depending on your shell
choice, the appropriate pairof these are executed during login.

These set the environment (as environmental variables) needed for you to
work on CHPC resources

Commands to check your environment: env or printenv

Some important variables

$USER

$HOME

$PATH – paths to search for commands

$LD_LIBRARY_PATH – paths to search for libraries when linking a
program (more on that later)

Processes

 A Process is a running Linux program
 Each process has a PID (Process ID)

 ps reports a snapshot of current processes
ps, ps x Display ALL of your processes

ps ax Display ALL processes

ps aux Display ALL processes (more detailed)

ps auxw Display ALL processes (more detailed & unlimited width)

ps –eFwww Also displays ALL processes

 kill PID kills the process with the specified PID

 killall processname kills all process with the processname

 kill -9 PID kills the process with the specified PID if a kill does not work

Other Job Controls

 Ctrl+C (^C) terminate the currently running process

 Ctrl-Z (^Z) suspends the currently running process

 & runs the job in the background

 Jobs: lists all jobs, with their number

 bg %n: puts current or specified job (%n) in the background and

 fg %n: bring suspended program back to the foreground, e.g., so that it
occupies the shell until done

Monitoring processes/usage

 uptime

 free

 top

 atop

 htop

 sar

Moving files to/from CHPC

https://www.chpc.utah.edu/documentation/data_services.php

 Can mount CHPC file systems on your local machine (Windows, Mac or Linux), must
be on campus or using the campus VPN

Windows – there are graphical tools such as WinSCP

Mac, Windows, cloud options – cyberduck, another graphical tool

 Linux
 scp command (secure shell copy) – to copy files between linux systems

 wget – to download from web with URL
curl is another option

 For larger data sets – look into the Data Transfer Nodes (DTNs) and transfer tools such
as globus, see
 https://www.globus.org/quickstart
https://www.chpc.utah.edu/documentation/data_services.php

https://www.chpc.utah.edu/documentation/data_services.php
https://www.globus.org/quickstart
https://www.chpc.utah.edu/documentation/data_services.php

