Skip to content

New contentThe CHPC has a new page summarizing machine learning and artifical intelligence resources.

Center for High Performance Computing

Research Computing and Data Support for the University Community

 

In addition to deploying and operating high-performance computational resources and providing advanced user support and training, CHPC serves as an expert team to broadly support the increasingly diverse research computing and data needs on campus. These needs include support for big data, big data movement, data analytics, security, virtual machines, Windows science application servers, protected environments for data mining and analysis of protected health information, advanced networking, and more.

If you are new to the CHPC, the best place to learn about CHPC resources and policies is our Getting Started page.

Have a question? Please check our Frequently Asked Questions page and contact us if you require assistance or have further questions or concerns.

Announcing the Upcoming Retirements of Julia Harrison and Anita M. Orendt
Julia Harrison
Julia Harrison

After nearly four decades of dedicated service at the University of Utah, Julia Harrison is retiring as the Operations Director of the Center for High Performance Computing.

Read more
Anita M. Orendt
Anita M. Orendt

Anita M. Orendt is a dedicated educator and researcher with a rich background in physical chemistry. Anita has made significant contributions to the academic community at the University of Utah.

Read more
Upcoming Events:

CHPC PE DOWNTIME: Partial Protected Environment Downtime  -- Oct 24-25, 2023

Posted October 18th, 2023


CHPC INFORMATION: MATLAB and Ansys updates

Posted September 22, 2023


CHPC SECURITY REMINDER

Posted September 8th, 2023

CHPC is reaching out to remind our users of their responsibility to understand what the software being used is doing, especially software that you download, install, or compile yourself. Read More...

News History...

Changes in Neuronal Membrane Properties Lead to Suppression of Hippocampal Ripples

By Eric D. Melonakos1, John A. White1,2, and Fernando R. Fernandez1,2

1Department of Bioengineering; 2Department of Biomedical Engineering, Boston University

Center for High Performance Computing resources were used to study the effects of cholinergic inputs to the hippocampus on patterns of brain activity.

Ripples (140–220 Hz) are patterns of brain activity, seen in the local field potential of the hippocampus, that are important for memory consolidation. Cholinergic inputs to the hippocampus from neurons in the medial septum-diagonal band of Broca cause a marked reduction in ripple incidence as rodents switch from memory consolidation to memory encoding behaviors. The mechanism for this disruption in ripple power is not fully understood. Among the major effects of acetylcholine (or carbachol, a cholinomimetic) on hippocampal neurons are 1) an increase in membrane potential, 2) a decrease in the size of spike after hyperpolarization (AHP), and 3) an increase in membrane resistance. Using an existing model of hippocampal ripples that includes 5000 interconnected neurons (Brunel and Wang, 2003), we manipulated these parameters and observed their effects on ripple power. Shown here, the network firing rate and ripple power of the original model (top row; pyramidal neuron data is shown in red, interneuron data is shown in black) undergo marked changes following a decrease in pyramidal neuron AHP size, as well as an increase in the membrane voltage of both types of neurons. These changes could be the means whereby cholinergic input suppresses hippocampal ripples.

Read the paper in Hippocampus.

System Status

General Environment

last update: 2024-11-06 16:31:02
General Nodes
system cores % util.
kingspeak 936/972 96.3%
notchpeak 3073/3212 95.67%
lonepeak 1530/1932 79.19%
Owner/Restricted Nodes
system cores % util.
ash Status Unavailable
notchpeak 15112/22068 68.48%
kingspeak 2748/5244 52.4%
lonepeak 36/416 8.65%

Protected Environment

last update: 2024-11-06 16:30:03
General Nodes
system cores % util.
redwood 258/628 41.08%
Owner/Restricted Nodes
system cores % util.
redwood 1064/6472 16.44%


Cluster Utilization

Last Updated: 11/4/24