Skip to content

New contentThe CHPC has a new page summarizing machine learning and artifical intelligence resources.

Center for High Performance Computing

Research Computing and Data Support for the University Community

 

In addition to deploying and operating high-performance computational resources and providing advanced user support and training, CHPC serves as an expert team to broadly support the increasingly diverse research computing and data needs on campus. These needs include support for big data, big data movement, data analytics, security, virtual machines, Windows science application servers, protected environments for data mining and analysis of protected health information, advanced networking, and more.

If you are new to the CHPC, the best place to learn about CHPC resources and policies is our Getting Started page.

Have a question? Please check our Frequently Asked Questions page and contact us if you require assistance or have further questions or concerns.

Announcing the Upcoming Retirements of Julia Harrison and Anita M. Orendt
Julia Harrison
Julia Harrison

After nearly four decades of dedicated service at the University of Utah, Julia Harrison is retiring as the Operations Director of the Center for High Performance Computing.

Read more
Anita M. Orendt
Anita M. Orendt

Anita M. Orendt is a dedicated educator and researcher with a rich background in physical chemistry. Anita has made significant contributions to the academic community at the University of Utah.

Read more
Upcoming Events:

CHPC PE DOWNTIME: Partial Protected Environment Downtime  -- Oct 24-25, 2023

Posted October 18th, 2023


CHPC INFORMATION: MATLAB and Ansys updates

Posted September 22, 2023


CHPC SECURITY REMINDER

Posted September 8th, 2023

CHPC is reaching out to remind our users of their responsibility to understand what the software being used is doing, especially software that you download, install, or compile yourself. Read More...

News History...

Tracking Pressure Features

By Alexander Jacques

MesoWest/SynopticLabs and Department of Atmospheric Sciences, University of Utah

Center for High Performance Computing resources were used to model the progression of a mesoscale gravity wave generated by a large storm system on April 26–27, 2011.

A mesoscale gravity wave, generated by a large storm system in the southern United States, moved northward through the central United States causing short-term changes in surface wind speed and direction. This animation shows efforts to detect and evaluate the negative mesoscale surface pressure perturbation generated by this wave. Detected positive (red contours) and negative (blue contours) perturbations are determined from perturbation analysis grids, generated every 5 minutes, using USArray Transportable Array surface pressure observations (circle markers). Best-track paths for the perturbations are shown via the dotted trajectories. To identify physical phenomena associated with the perturbations, conventional radar imagery was also leveraged. It can be seen here that the detected feature migrates north away from the majority of the precipitation, which is often seen with mesoscale gravity wave features.

System Status

General Environment

last update: 2024-12-30 10:21:02
General Nodes
system cores % util.
kingspeak 788/952 82.77%
notchpeak 3120/3212 97.14%
lonepeak 460/1596 28.82%
Owner/Restricted Nodes
system cores % util.
ash Status Unavailable
notchpeak 10712/22028 48.63%
kingspeak 1680/5244 32.04%
lonepeak 48/416 11.54%

Protected Environment

last update: 2024-12-30 10:20:03
General Nodes
system cores % util.
redwood 8/616 1.3%
Owner/Restricted Nodes
system cores % util.
redwood 2167/6472 33.48%


Cluster Utilization

Last Updated: 12/17/24